Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Indium Zinc Oxide pyramids with pinholes and nanopipes

dc.contributor.authorBartolomé Vílchez, Javier
dc.contributor.authorMaestre Varea, David
dc.contributor.authorAmati, Mateo
dc.contributor.authorCremades Rodríguez, Ana Isabel
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.date.accessioned2023-06-20T03:35:38Z
dc.date.available2023-06-20T03:35:38Z
dc.date.issued2011-04-28
dc.description©2011 American Chemical Society. This work was supported by MCINN (MAT2009-07882, CSD2009-00013) and UCM-BSCH (GR58-08).
dc.description.abstractMicropyramids of zinc-doped indium oxide have been grown by thermal treatments of compacted InN and ZnO powders at temperatures between 700:and 900 degrees C Under argon flow. X-ray diffraction (XRD) measurements and energy-dispersive X-ray (EDS) mappings as well as local EDS spectra enable the identification of rough surfaces of the pyramids with the nucleation of a shell of nanocrystallites with high Zn/In ratio because of the formation of Zn(k)In(2)O(k+3). Some of the pyramids have a truncated tip with pinholes with regular crystalline facets. The apexes of these pinhole's present a hollow core or nanopipe The possible relation of the nanopipes with a dislocation driven growth is discussed. A growth model is proposed from the morphology evolution of the pyramids during the formation of the In(2)O(3)-ZnO (IZO) compound X-ray photoelectron spectroscopy and microscopy (XPS-ESCA) Measurements are used to discuss the Zn incorporation as a dopant and the formation of Zn(k)In(2)O(k+3) ternaries. Cathodoluminescence (CL) in the scanning electron microscopy (SEM) shows a dependence of the luminescence of the microstructures on the Zn concentration and the growth temperature.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMCINN
dc.description.sponsorshipUCM-BSCH
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23007
dc.identifier.doi10.1021/jp201076s
dc.identifier.issn1932-7447
dc.identifier.officialurlhttp://pubs.acs.org/doi/abs/10.1021/jp201076s
dc.identifier.relatedurlhttp://pubs.acs.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43987
dc.issue.number16
dc.journal.titleJournal of Physical Chemistry C
dc.language.isoeng
dc.page.final8360
dc.page.initial8354
dc.publisheramer Chemical Soc
dc.relation.projectIDMAT2009-07882
dc.relation.projectIDCSD2009-00013
dc.relation.projectIDGR58-08
dc.rights.accessRightsrestricted access
dc.subject.cdu538.9
dc.subject.keywordOxide Nanowires
dc.subject.keywordIndium Oxide
dc.subject.keywordNanostructures
dc.subject.keywordTwist
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleIndium Zinc Oxide pyramids with pinholes and nanopipes
dc.typejournal article
dc.volume.number115
dcterms.references(1) Magdas, D. A.; Cremades, A; Piqueras, J. Appl. Phys. Lett. 2006, 88, 113107. (2) Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. Science 2004, 305, 1269–1273. (3) Maestre, D.; Cremades, A.; Gregoratti, L.; Piqueras, J. J. Nanosci. Nanotechnol. 2008, 8, 6533–6537. (4) Maestre, D.; Cremades, A.; Piqueras, J. J. Appl. Phys. 2005, 97, 044316. (5) Hao, Y.; Meng, G.; Ye, Ch.; Zhang, L. Cryst. Growth Des. 2005, 5, 1617–1621. (6) Masuda, Y.; Kinoshita, N.; Sato, F.; Koumoto, K. Cryst. Growth Des. 2006, 6, 75–78. (7) Ramamoorthy, K.; Kumar, K.; Chandramohan, R.; Sankaranarayanan, K. Mater. Sci. Eng., B 2006, 126, 1–15. (8) Ito, N.; Sato, Y.; Song, P. K.; Kaijio, A.; Inoue, K.; Shigesato, Y. Thin Solid Films 2006, 496, 99–103. (9) Lee, W. J.; Fang, Y. K.; Ho, J. J.; Chen, C. Y.; Chiou, L. H.; Wang, S. J.; Dai, F.; Hsieh, T.; Tsai, R. Y.; Huang, D.; Ho, F. C. Solid-State Electron. 2002, 46, 477–480. (10) Hu, G.; Kumar, B.; Gong, H.; Chor, E. F.; Wu, P. Appl. Phys. Lett. 2006, 88, 101901. (11) Makise, K.; Kokubo, N.; Takada, S.; Yamaguti, T.; Ogura, S.; Yamada, K.; Shinozaki, B.; Yano, K.; Inoue, K.; Nakamura, H. Sci. Technol. Adv. Mater. 2008, 9, 044208. (12) Heindl, J.; Strunk, H. P. Phys. Status Solidi B 1996, 193, K1–K3. (13) Hawkridge, M. E.; Cherns, D. Appl. Phys. Lett. 2005, 87, 221903. (14) Qian, W.; Rohrer, G. S.; Skowronski, M.; Doverspike, K.; Rowland, L. B.; Gaskill, D. K. Appl. Phys. Lett. 1995, 67, 2284. (15) Herrera, M.; Cremades, A.; Piqueras, J.; Stutzmann, M.; Ambacher, O. J. Appl. Phys. 2004, 95, 5305–5310. (16) Cho, H. K.; Lee, J. Y.; Yang, G. M.; Kim, C. S. Appl. Phys. Lett. 2001, 79, 215–217. (17) Herrera, M.; Cremades, A.; Stutzmann, M.; Piqueras, J. Superlattices Microstruct. 2009, 45, 435–443. (18) Frank, F. C. Acta Crystallogr. 1951, 4, 497–501. (19) Maestre, D.; Cremades, A.; Piqueras, J.; Gregoratti, L. J. Appl. Phys. 2008, 103, 093531. (20) Maestre, D.; Cremades, A.; Gregoratti, L.; Piqueras, J. J. Phys. Chem. C 2010, 114, 3411–3415. (21) Lim, S. K.; Tambe, M. J.; Brewster, M. M.; Grade cak, S. Nano Lett. 2008, 8, 1386–1392. (22) Farvid, S. S.; Dave, N.; Wang, T.; Radovanovic, P. V. J. Phys. Chem. C 2009, 113, 15928–15933. (23) Alem an, B.; Fern andez, P.; Piqueras, J. Appl. Phys. Lett. 2009, 95, 013111. (24) Hiramatsu, H.; Seo, W. S.; Koumoto, K. Chem. Mater. 1998, 10, 3033–3039. (25) Yan, Y.; Da Silva, J. L. F.; Wei, S. H.; Al-Jassim, M. Appl. Phys. Lett. 2007, 90, 261904. (26) Fan, J. C. C.; Goodenough, J. B. J. Appl. Phys. 1977, 48, 3524. (27) Kumar, B.; Gong, H.; Akkipeddi, R. J. Appl. Phys. 2005, 97, 063706. (28) Maestre, D.; Martínez de Velasco, I.; Cremades, A.; Amati, M.; Piqueras, J. J. Phys. Chem. C 2010, 114, 11748–11752. (29) Wang, R. X.; Beling, C. D.; Fung, S.; Djuri si c, A. B.; Ling, C. C.; Li, S. J. Appl. Phys. 2005, 97, 033504. (30) Lim, W. T.; Norton, D. P.; Jang, J. H.; Craciun, V.; Pearton, S. J.; Ren, F. Appl. Phys. Lett. 2008, 92, 122102. (31) Zhang, W. F.; He, Z. B.; Yuan, G. D.; Jie, J. S.; Luo, L. B.; Zhang, X. J.; Chen, Z. H.; Lee, C. S.; Zhang, W. J.; Lee, S. T. Appl. Phys. Lett. 2009, 94, 123103. (32) Yamamoto, T.; Katayama-Yoshida, H. J. Cryst. Growth 2000, 214, 552–555. (33) Walsh, A.; Da Silva, J. L. F.; Yan, Y.; Al-Jassim, M.; Wei, S. H. Phys. Rev. B 2009, 79, 073105. (34) Jia, H.; Zhang, Y.; Chen, X.; Shu, J.; Luo, X.; Zhang, Z.; Yu, D. Appl. Phys. Lett. 2003, 82, 4146–4148. (35) Magdas, D. A.; Cremades, A.; Piqueras, J. J. Appl. Phys. 2006, 100, 094320. (36) Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153–1175. (37) Yan, Y. G.; Zhang, Y.; Zeng, H. B.; Zhang, L. D. Cryst. Growth Des. 2007, 7, 940–943. (38) Sears, G. W. J. Chem. Phys. 1956, 25, 637–642. (39) Bierman, M. J.; Lau, Y. K. A.; Kvit, A. V.; Schmitt, A. L.; Jin, S. Science 2008, 320, 1060–1063. (40) Lee, M. S.; Choi, W. C.; Kim, E. K.; Kim, C. K.; Min, S. K. Thin Solid Films 1996, 279, 1–3. (41) Mazzera, M.; Zha, M.; Calestani, D.; Zappettini, A.; Lazzarini, L.; Salviati, G.; Zanotti, L. Nanotechnology 2007, 18, 355707. (42) Lany, S.; Zunger, A. Phys. Rev. Lett. 2007, 98, 045501. (43) Dai, L.; Chen, X. L.; Jian, J. K.; He, M.; Zhou, T.; Hu, B. Q. Appl. Phys. A: Mater. Sci. Process. 2002, 75, 687–689. (44) Zeng, F.; Zhang, X.; Wang, J.; Wang, L.; Zhang, L. Nanotechnology 2004, 15, 596–600. (45) Cao, H.; Qiu, X.; Liang, Y.; Zhu, Q. Appl. Phys. Lett. 2003, 83, 761–763. (46) Zheng, M. J.; Zhang, L. D.; Li, G. H.; Zhang, X. Y.; Wang, X. F. Appl. Phys. Lett. 2001, 79, 839–841. (47) Weiher, L. R.; Rinaldi, R. J. Appl. Phys. 1966, 37, 299. (48) King, P. D. C.; Veal, T. D.; Fuchs, F.; Wang, Ch. Y.; Payne, D. J.; Bourlange, A.; Zhang, H.; Bell, G. R.; Cimalla, V.; Ambacher, O.; Egdell, R. G.; Bechstedt, F.; McConville, C. F. Phys. Rev. B 2009, 79, 205211. (49) Walsh, A.; Da Silva, J. L. F.; Wei, S. H.; K€orber, C.; Klein, A.; Piper, L. F. J.; DeMasi, A.; Smith, K. E.; Panaccione, G.; Torelli, P.; Payne, D. J.; Bourlange, A.; Egdell, R. G. Phys. Rev. Lett. 2008, 100, 167402. (50) Khomenkova, L.; Fern andez, P.; Piqueras, J. Cryst. Growth Des. 2007, 7, 836–839. (51) Grym, J.; Fern andez, P.; Piqueras, J. Nanotechnology 2005, 16, 931–935.
dspace.entity.typePublication
relation.isAuthorOfPublication584d700c-79ff-4e20-a35d-519d0958238e
relation.isAuthorOfPublication43cbf291-2f80-4902-8837-ea2a9ffaa702
relation.isAuthorOfPublicationda0d631e-edbf-434e-8bfd-d31fb2921840
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscovery584d700c-79ff-4e20-a35d-519d0958238e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CremadesAna03.pdf
Size:
3.14 MB
Format:
Adobe Portable Document Format

Collections