Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Micro-kernels for portable and efficient matrix multiplication in deep learning

dc.contributor.authorAlaejos, Guillermo
dc.contributor.authorCastelló, Adrián
dc.contributor.authorMartínez, Héctor
dc.contributor.authorAlonso-Jordá, Pedro
dc.contributor.authorQuintana-Ortí, Enrique S.
dc.contributor.authorIgual Peña, Francisco Daniel
dc.date.accessioned2025-01-21T12:20:09Z
dc.date.available2025-01-21T12:20:09Z
dc.date.issued2022-12-14
dc.description.abstractWe provide a practical demonstration that it is possible to systematically generate a variety of high-performance micro-kernels for the general matrix multiplication (gemm) via generic templates which can be easily customized to different processor architectures and micro-kernel dimensions. These generic templates employ vector intrinsics to exploit the SIMD (single instruction, multiple data) units in current general-purpose processors and, for the particular type of gemm problems encountered in deep learning, deliver a floating-point throughput rate on par with or even higher than that obtained with conventional, carefully tuned implementations of gemm in current linear algebra libraries (e.g., BLIS, AMD AOCL, ARMPL). Our work exposes the structure of the template-based micro-kernels for ARM Neon (128-bit SIMD), ARM SVE (variable-length SIMD) and Intel AVX512 (512-bit SIMD), showing considerable performance for an NVIDIA Carmel processor (ARM Neon), a Fujitsu A64FX processor (ARM SVE) and on an AMD EPYC 7282 processor (256-bit SIMD).
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationAlaejos, G., Castelló, A., Martínez, H. et al. Micro-kernels for portable and efficient matrix multiplication in deep learning. J Supercomput 79, 8124–8147 (2023). https://doi.org/10.1007/s11227-022-05003-3
dc.identifier.doi10.1007/s11227-022-05003-3
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s11227-022-05003-3
dc.identifier.urihttps://hdl.handle.net/20.500.14352/115347
dc.journal.titleThe Journal of Supercomputing
dc.language.isoeng
dc.page.final8147
dc.page.initial8124
dc.publisherSpringer
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ucmInformática (Informática)
dc.subject.unesco3304.06 Arquitectura de Ordenadores
dc.titleMicro-kernels for portable and efficient matrix multiplication in deep learning
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number79
dspace.entity.typePublication
relation.isAuthorOfPublicatione1ed9960-37d5-4817-8e5c-4e0e392b4d66
relation.isAuthorOfPublication.latestForDiscoverye1ed9960-37d5-4817-8e5c-4e0e392b4d66

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2022_SI_PDP_BLIS_MICROKERNELS (1).pdf
Size:
411.75 KB
Format:
Adobe Portable Document Format

Collections