Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Design of the enzyme–carrier interface to overcome the O<sub>2</sub> and NADH mass transfer limitations of an immobilized flavin oxidase

dc.contributor.authorBenítez Mateos, Ana I.
dc.contributor.authorHuber, Christina
dc.contributor.authorNidetzky, Bernd
dc.contributor.authorBolívar Bolívar, Juan Manuel
dc.contributor.authorLópez Gallego, Fernando
dc.date.accessioned2024-12-05T09:57:28Z
dc.date.available2024-12-05T09:57:28Z
dc.date.issued2020-12-04
dc.description.abstractUnderstanding how the immobilization of enzymes on solid carriers affects their performance is paramount for the design of highly efficient heterogeneous biocatalysts. An efficient supply of substrates onto the solid phase is one of the main challenges to maximize the activity of the immobilized enzymes. Herein, we apply advanced single-particle analysis to decipher the optimal design of an immobilized NADH oxidase (NOX) whose activity depends both on O2 and NADH concentrations. Carrier physicochemical properties and its functionality along with the enzyme distribution across the carrier were implemented as design variables to study the effects of the intraparticle concentration of substrates (O2 and NADH) on the activity. Intraparticle O2-sensing analysis revealed the superior performance of the enzyme immobilized at the outer surface in terms of effective supply of O2. Furthermore, the co-immobilization of NADH and NOX within the tuned surface of porous microbeads increases the effective concentration of NADH in the surroundings of the enzyme. As a result, the optimal spatial organization of NOX and its confinement with NADH allow a 100% recovery of the activity of the soluble enzyme upon the immobilization process. By engineering these variables, we increase the NADH oxidation activity of the heterogeneous biocatalyst by up to 650% compared to NOX immobilized under suboptimal conditions. In conclusion, this work highlights the rational design and engineering of the enzyme–carrier interface to maximize the efficiency of heterogeneous
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMINECO (RTI2018-094398-B-I00).
dc.description.sponsorshipERC-Co (METACELL-878089))
dc.description.sponsorshipERA-CoBioTech
dc.description.sponsorshipGovernment of Community of Madrid (2018-T1/BIO-10200
dc.description.statuspub
dc.identifier.doi10.1021/acsami.0c17568
dc.identifier.issn1944-8244
dc.identifier.issn1944-8252
dc.identifier.officialurlhttps://doi.org/10.1021/acsami.0c17568
dc.identifier.relatedurlhttps://pubs.acs.org/doi/10.1021/acsami.0c17568
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112133
dc.issue.number50
dc.language.isoeng
dc.relation.projectIDRTI2018-094398-B-I00
dc.relation.projectIDMETACELL-878089
dc.relation.projectIDHOMBIOCAT/ PCI2018-092984
dc.relation.projectID2018-T1/BIO-10200
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordImmobilized enzymes
dc.subject.keywordSubstrate diffusion
dc.subject.keywordO2 sensing
dc.subject.keywordMass transfer limitations
dc.subject.keywordSingle-particle analysis
dc.subject.ucmIngeniería química
dc.subject.ucmBioquímica (Química)
dc.subject.ucmMateriales
dc.subject.ucmQuímica analítica (Química)
dc.subject.unesco2302 Bioquímica
dc.subject.unesco3302 Tecnología Bioquímica
dc.subject.unesco3303 Ingeniería y Tecnología Químicas
dc.subject.unesco3312 Tecnología de Materiales
dc.titleDesign of the enzyme–carrier interface to overcome the O<sub>2</sub> and NADH mass transfer limitations of an immobilized flavin oxidase
dc.typeworking paper
dc.type.hasVersionAM
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublicationdd41e7a5-3013-4b28-8263-915921ecf30a
relation.isAuthorOfPublication.latestForDiscoverydd41e7a5-3013-4b28-8263-915921ecf30a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Manuscript_ACS_AMI_FINAL_unlabelled.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format

Collections