Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the behavior and cases of nonexistence of the free-boundary in a semibounded porous-medium

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorKersner, R.
dc.date.accessioned2023-06-20T16:57:22Z
dc.date.available2023-06-20T16:57:22Z
dc.date.issued1988-05-15
dc.description.abstractThe authors consider the Fokker-Planck equation ut=(um)xx+b(uλ)x, x>0, t>0, with initial and boundary data u(x,0)=u0(x), x>0, u(0,t)=u1(t), t>0, u0 having its support in a bounded interval. They concentrate on the case 0<λ<1, m≥1 with the aim of investigating the behavior of the free boundary, i.e. the moving boundary of suppu, in various different cases. When b>0 it is shown that if u1 tends to zero as t→∞, then the free boundary tends to zero. If u1 vanishes in a finite time, so does the free boundary. The possibility that the free boundary tends to infinity is also discussed. Moreover, conditions are found on m,λ and on u1 such that the free boundary can be estimated from above (localization) and from below by a positive constant. When b<0 it is shown that the free boundary never exists (for λ≥1, m>1 the free boundary is known to start from the right endpoint of suppu0).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCAICYT (Spain)
dc.description.sponsorshipAKA (Hungary)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16261
dc.identifier.doi10.1016/0022-247X(88)90061-3
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0022247X88900613
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57508
dc.issue.number1
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final289
dc.page.initial281
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.954
dc.subject.keywordbehavior
dc.subject.keywordfree boundary
dc.subject.keywordsemibounded porous medium
dc.subject.keywordCauchy-Dirichlet problem
dc.subject.keywordFokker-Planck equation
dc.subject.keywordqualitative properties
dc.subject.keywordfree boundaries
dc.subject.keywordinterfaces
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleOn the behavior and cases of nonexistence of the free-boundary in a semibounded porous-medium
dc.typejournal article
dc.volume.number132
dcterms.referencesD. G. ARONSON, Regularity properties of flows through porous media: The interface,Arch. Rational Mech. Anal. 37 (1970), l-l0. J. I. DÍAZ AND R. KERSNER, "On a Nonlinear Degenerate Parabolic Equation in Infiltration of Evaporation through a Porous Medium,"J.of Differential Equayions 69(1987),368-403. J. I. DíAZ AND R. KERSNER,Non cxistence d'une des frontiers libres dans une equation degenereé en theorie de la filtration, C. R. Acad. Sci. Paris 296 (1983), 505-508. B. H. GILDING, A nonlinear degenerate parabolic equation, Ann. Scuola Norm. Sup. Pisa 4(1977), 393-432. B. H. GILDING, Properties of Sollltions of an equation in the theory of infiltration, Arch.Rational Mech. Anal. 65 (1977), 203-225. A. S. KALASHNIKOV, On the character of the propagation of perturbation in processes described by quasilinear degenerate parabolic equations, in "Proceedings, Seminars Dedicated to I. G. Petrovskogo, 1975," pp.135-144. [Russian] A. S. KALASHNIKOV, On the influence of the boundary values on the behaviour of temperature of nonlinear non-stationary mcdium, Vestnik Moskov. Univ. Ser. I Mat.Mekh.(1986),40-45. [Russian] R. KERSNER, Localization conditions for thermal perturbations in a semibounded moving medium with absorption, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 31 (1976), 52-58;transl. in Moscow Univ. Math. Bull. B. F, KNERR, The porous mediurn cquation in one dimension, Trans. Amer. Math. Soc.234 (1977), 381-415. J. R. PHILLIP, Evaporation, and moisture and heat fields in the soils, J Meterol. 14(1957), 354--366. D. SWARTZENDRUBER. The flow of water in unsaturated soils, in "Flow Through Porous Media" (R. J. M. Dewiested, Ed.) pp. 215-292, Academic Press, New York, 1969. J. L. VAZQUEZ, Asymptotic behaviour and propagation of the one-dimensional flow of gas in a porous medium, Trans. Amer. Math. Soc. 277 (1983). 507-527.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
121.pdf
Size:
248.58 KB
Format:
Adobe Portable Document Format

Collections