Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A numerical method to solve a duopolistic differential game in a closed-loop equilibrium

dc.contributor.authorDe la Cruz, Jorge H.
dc.contributor.authorIvorra, Benjamín Pierre Paul
dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.date.accessioned2023-06-20T09:15:21Z
dc.date.available2023-06-20T09:15:21Z
dc.date.issued2012-10
dc.description.abstractIn this work, we develope a numerical method to solve infinite time differential games in closed-loop equilibria. Differential games are thought to be run in dynamic decissions and competitive situations, such as marketing investments and pricing policies in a company. Closed-loop equilibria allow us to obtain strategies as a function of ourselves and our competitor. We apply our algorithm to a real data set of two competitive firms. We show how our algorithm is able to develop a different price-advertising strategy to get bigger benefits
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statussubmitted
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29056
dc.identifier.officialurlhttp://www.mat.ucm.es/deptos/ma/prepublicaciones/2012/2012-13p.pdf
dc.identifier.relatedurlhttp://www.mat.ucm.es/deptos/ma
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49144
dc.issue.number13
dc.journal.titlePrepublicaciones del Departamento de Matemática Aplicada
dc.language.isoeng
dc.page.final44
dc.page.initial1
dc.publisherUniversidad Complutense. Departamento de Matemática Aplicada
dc.rights.accessRightsopen access
dc.subject.cdu519.6
dc.subject.cdu517.977.8
dc.subject.keywordDifferential games
dc.subject.keywordclosed-loop equilibrium
dc.subject.keywordtime series models
dc.subject.keywordLotka-Volterra models
dc.subject.keywordHamilton-Jacobi-Bellman equations
dc.subject.keyworddynamic programming
dc.subject.ucmAnálisis numérico
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1206 Análisis Numérico
dc.subject.unesco1207 Investigación Operativa
dc.titleA numerical method to solve a duopolistic differential game in a closed-loop equilibrium
dc.typetechnical report
dcterms.references1. Arnason R, Steinsham S, Sandal L, Vestergaard N (2004). Optimal Feedback Controls: Comparative evaluation of the cod fisheries in Denmark,Iceland, and Norway. American Journal of Agricultural Economics.86(2)(May 2004): 531-542. 2. Basar T,Olsder G.J. (1987). Dynamic Non-Cooperative Game Theory. Society for Industrial and Applied Mathematics 3. Cerdo, E. (2000). Optimizacion Dinamica, 1 Edicion. Prentice Hall. 4. Dockner E, Jorgensen S, Van Long N, Sorger G. (2000). Differential games in economics and management science. Cambridge University press. 5. Ewing B.T, R. K. (2006). Time series analysis of a predator-prey system: Application of VAR and generalized impulse response function. Journal of Ecological Economics. 60(Jan 2007): 605-612. 6. Grïene L, Semmpler W. (2004). Using dynamic programming with adaptive grids to solve control problems in economics. Journal of Economic Dynamics and Control. 28(Dec 2004): 2427-2456. 7. Hamilton,J.D. (1994). Time Series Analysis. Princeton University Press. 8. Jorgensen S, Z. G. (2006). Developments in differential game theory and numerical methods:economic and management applications. Journal of Computational Management Science. 4(Apr 2007): 159-181. 9. Kenneth L. Judd, A. S. (2004). Numerical Dynamic Programming with Shape Preserving Splines. Working paper 10. Krishnamoorthy A, P. A. (2010). Optimal pricing and Advertising in a Durable - good duopoly. European Journal of Operational Research, 200(2)(Jan 2010): 486-497. 11. Lopez L, S. M. (2001). Defining strategies to win in the Internet market. Physica A. 301 (jan 2001) 512-534. 12. Manuel S Santos, J. V.-A. (1998). Analysis of a Numerical Dynamic Programming Algorithm Applied to Economic Models. Econometrica. 66 (2) (1998) 409-426. 13. Michalakelis, C. (2009). Modeling Competition in the Telecommunications Market Based on Concepts of Population Biology. IEEE transactions on systems, man, and cybernetics.41(2) (2011) 200-210. 14. Wan,Q. (1996). A duopolistic model of dynamic Competitive advertising and empirical validation. Nanayang Technological University, Working paper series. 15. Sethi S, Prasad A, He X. (2008). Optimal advertising and pricing in a new product adoption model. Journal of Optimization Theory and Applications.139 (2) (2008)351-360 16. Sigurd, A. (2009). Essais on explotation on natural resources. Optimal control theory applied on multispecies fisheries and fossil fuel extraction. Doctoral Thesis. 17. Stukalin D, Schmidt. W. (2011). Some Applications of Optimal Control in Sustainable Fishing in the Baltic Sea. Applied Mathematics.7(2) (2011) 854-865. 18. Sun, M. (2006). Dynamic Platform Competition in two-sided markets. ProQuest Dissertations and Theses.
dspace.entity.typePublication
relation.isAuthorOfPublication6d5e1204-9b8a-40f4-b149-02d32e0bbed2
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscovery6d5e1204-9b8a-40f4-b149-02d32e0bbed2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ivorra19.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format