Mathematical models of aggregation: the role of explicit solutions
| dc.book.title | Elliptic and parabolic problems: a special tribute to the work of Haim Brezis | |
| dc.contributor.author | Herrero, Miguel A. | |
| dc.contributor.editor | Bandle, Catherine | |
| dc.contributor.editor | Berestycki, Henri | |
| dc.contributor.editor | Brighi, Bernhard | |
| dc.contributor.editor | Brillard, Alain | |
| dc.contributor.editor | Chipot, Michel | |
| dc.contributor.editor | Coron, Jean-Michel | |
| dc.contributor.editor | Sbordone, Carlo | |
| dc.contributor.editor | Shafrir, Itai | |
| dc.contributor.editor | Valente, Vanda | |
| dc.contributor.editor | Vergara Caffarelli, Giorgio | |
| dc.date.accessioned | 2023-06-20T13:39:47Z | |
| dc.date.available | 2023-06-20T13:39:47Z | |
| dc.date.issued | 2005 | |
| dc.description | Proceedings of the 5th European Conference held in Gaeta, May 30–June 3, 2004 | |
| dc.description.abstract | We briefly review some classical models of aggregate formation with regard to their elementary monomeric components. Particular attention is paid to the role played by explicit solutions in the overall evolution of the theory, for which some relevant results and open questions are stressed. | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/22481 | |
| dc.identifier.doi | 10.1007/3-7643-7384-9_31 | |
| dc.identifier.isbn | 978-3-7643-7249-1 | |
| dc.identifier.officialurl | http://link.springer.com/chapter/10.1007%2F3-7643-7384-9_31 | |
| dc.identifier.relatedurl | http://link.springer.com | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/53275 | |
| dc.issue.number | 63 | |
| dc.language.iso | eng | |
| dc.page.final | 318 | |
| dc.page.initial | 309 | |
| dc.page.total | 470 | |
| dc.publication.place | Basel | |
| dc.publisher | Birkhäuser | |
| dc.relation.ispartofseries | Progress in nonlinear differential equations and their applications | |
| dc.rights.accessRights | restricted access | |
| dc.subject.cdu | 517.9 | |
| dc.subject.cdu | 517.956.4 | |
| dc.subject.keyword | Partial differential equations | |
| dc.subject.ucm | Ecuaciones diferenciales | |
| dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
| dc.title | Mathematical models of aggregation: the role of explicit solutions | |
| dc.type | book part | |
| dcterms.references | D.J. Aldous: Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernouilli 5,1 (1999), 3–48. H. Amann: Coagulation-fragmentation processes. Arch. Rat. Mech. Anal. 151 (2000), 339–366. Ph. Benilan and D. Wrzosek: On an infinite system of reaction-diffusion equations. Adv. Math. Sci. Appl. 7 (1997), 351–366. F.P. da Costa: A finite-dimensional dynamical model for gelation in coagulation processes. J. Nonlinear Sci. 8 (1998), 619–653. S. Chandrasekhar: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15 (1943), 1–91. P. van Dongen and M.H. Ernst: Kinetics of reversible polymerization. J. Stat. Phys. 37 (1984), 301–329. Diogenes Laertius: Lives of eminent philosophers II. Loeb Classical Library, Harvard University Press (1979). P.J. Flory: Molecular size distribution in three dimensional polymers I. Gelation. J. Am. Chem. Soc. 63 (1941), 3038–3090. A. Fasano and F. Rosso: Dynamics of droplets in an agitated dispersion with multiple breakage and unbounded fragmentation rate. University of Florence preprint series nr. 10 (2004). M.A. Herrero and M. Rodrigo: A discrete kinetic system related to coagulation-fragmentation problems. Preprint (2004). M.A. Herrero, J.J.L. Velázquez and D. Wrzosek: Sol-gel transition in a coagulation-diffusion model. Physica D 141 (2000), 221–247. F. Leyvraz: Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Preprint (2004). F. Leyvraz and H.R. Tschudi: Singularities in the kinetics of coagulation processes. J. Phys. A. 14 (1981), 3389–3405. P. Laurençot and D. Wrzosek: The Becker-Döring model with diffusion II. The long time behavior. J. Diff. Equations 148 (1998), 268–291. J.B. Mc Leod: On an infinite set of non-linear differential equations. Quart. J. Math. Oxford 2 (1962), 119–128. G. Menon and R.L. Pego: Approach to self-similarity in Smoluchowski’s coagulation equations. Max Planck Institut, Leipzig, Preprint nr. 82 (2003). P. Sandkühler, J. Sefcik and M. Morbidelli: Kinetics of gel formation in dilute dispersions with strong attractive particle interactions. Adv. in Colloid and Interface Science 108–109 (2004), 133–143. M. von Smoluchowski: Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloiden. Physik Z. 17 (1916), 557–585. W.H. Stockmayer: Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys. 11 (1943), 45–55. R.M. Ziff: Kinetics of polymerization. J. Stat. Phys. 23,2 (1980), 241–263 | |
| dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1

