Mathematical models of aggregation: the role of explicit solutions

dc.book.titleElliptic and parabolic problems: a special tribute to the work of Haim Brezis
dc.contributor.authorHerrero, Miguel A.
dc.contributor.editorBandle, Catherine
dc.contributor.editorBerestycki, Henri
dc.contributor.editorBrighi, Bernhard
dc.contributor.editorBrillard, Alain
dc.contributor.editorChipot, Michel
dc.contributor.editorCoron, Jean-Michel
dc.contributor.editorSbordone, Carlo
dc.contributor.editorShafrir, Itai
dc.contributor.editorValente, Vanda
dc.contributor.editorVergara Caffarelli, Giorgio
dc.date.accessioned2023-06-20T13:39:47Z
dc.date.available2023-06-20T13:39:47Z
dc.date.issued2005
dc.descriptionProceedings of the 5th European Conference held in Gaeta, May 30–June 3, 2004
dc.description.abstractWe briefly review some classical models of aggregate formation with regard to their elementary monomeric components. Particular attention is paid to the role played by explicit solutions in the overall evolution of the theory, for which some relevant results and open questions are stressed.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22481
dc.identifier.doi10.1007/3-7643-7384-9_31
dc.identifier.isbn978-3-7643-7249-1
dc.identifier.officialurlhttp://link.springer.com/chapter/10.1007%2F3-7643-7384-9_31
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53275
dc.issue.number63
dc.language.isoeng
dc.page.final318
dc.page.initial309
dc.page.total470
dc.publication.placeBasel
dc.publisherBirkhäuser
dc.relation.ispartofseriesProgress in nonlinear differential equations and their applications
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu517.956.4
dc.subject.keywordPartial differential equations
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleMathematical models of aggregation: the role of explicit solutions
dc.typebook part
dcterms.referencesD.J. Aldous: Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernouilli 5,1 (1999), 3–48. H. Amann: Coagulation-fragmentation processes. Arch. Rat. Mech. Anal. 151 (2000), 339–366. Ph. Benilan and D. Wrzosek: On an infinite system of reaction-diffusion equations. Adv. Math. Sci. Appl. 7 (1997), 351–366. F.P. da Costa: A finite-dimensional dynamical model for gelation in coagulation processes. J. Nonlinear Sci. 8 (1998), 619–653. S. Chandrasekhar: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15 (1943), 1–91. P. van Dongen and M.H. Ernst: Kinetics of reversible polymerization. J. Stat. Phys. 37 (1984), 301–329. Diogenes Laertius: Lives of eminent philosophers II. Loeb Classical Library, Harvard University Press (1979). P.J. Flory: Molecular size distribution in three dimensional polymers I. Gelation. J. Am. Chem. Soc. 63 (1941), 3038–3090. A. Fasano and F. Rosso: Dynamics of droplets in an agitated dispersion with multiple breakage and unbounded fragmentation rate. University of Florence preprint series nr. 10 (2004). M.A. Herrero and M. Rodrigo: A discrete kinetic system related to coagulation-fragmentation problems. Preprint (2004). M.A. Herrero, J.J.L. Velázquez and D. Wrzosek: Sol-gel transition in a coagulation-diffusion model. Physica D 141 (2000), 221–247. F. Leyvraz: Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Preprint (2004). F. Leyvraz and H.R. Tschudi: Singularities in the kinetics of coagulation processes. J. Phys. A. 14 (1981), 3389–3405. P. Laurençot and D. Wrzosek: The Becker-Döring model with diffusion II. The long time behavior. J. Diff. Equations 148 (1998), 268–291. J.B. Mc Leod: On an infinite set of non-linear differential equations. Quart. J. Math. Oxford 2 (1962), 119–128. G. Menon and R.L. Pego: Approach to self-similarity in Smoluchowski’s coagulation equations. Max Planck Institut, Leipzig, Preprint nr. 82 (2003). P. Sandkühler, J. Sefcik and M. Morbidelli: Kinetics of gel formation in dilute dispersions with strong attractive particle interactions. Adv. in Colloid and Interface Science 108–109 (2004), 133–143. M. von Smoluchowski: Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloiden. Physik Z. 17 (1916), 557–585. W.H. Stockmayer: Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys. 11 (1943), 45–55. R.M. Ziff: Kinetics of polymerization. J. Stat. Phys. 23,2 (1980), 241–263
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero300.pdf
Size:
3.61 MB
Format:
Adobe Portable Document Format