Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Influence of Sn and Cr Doping on Morphology and Luminescence of Thermally Grown Ga_2O_3 Nanowires

dc.contributor.authorLópez, Iñaki
dc.contributor.authorNogales Díaz, Emilio
dc.contributor.authorMéndez Martín, María Bianchi
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorPeche, Andrea
dc.contributor.authorRamirez-Castellanos, Julio
dc.contributor.authorGonzalez-Calbet, José M.
dc.date.accessioned2023-06-19T13:23:48Z
dc.date.available2023-06-19T13:23:48Z
dc.date.issued2013-02-14
dc.description© 2013 American Chemical Society. This work has been supported by MICINN through Projects MAT 2009-07882 and Consolider Ingenio CSD 2009-00013. The authors are grateful to Dr. Luca Gregoratti at the Sincrotrone Elettra Trieste for useful advice on XPS measurements.
dc.description.abstractElongated micro- and nanostructures of Sn doped or Sn and Cr codoped monoclinic gallium oxide have been grown by a thermal method. The presence of Sn during growth has been shown to strongly influence the morphology of the resulting structures, including Sn doped branched wires, whips, and needles. Subsequent codoping with Cr is achieved through thermal diffusion for photonic purposes. The formation mechanism of the branched structures has been studied by transmission electron microscopy (TEM). Epitaxial growth has been demonstrated in some cases, revealed by a very high quality interface between the central rod and the branches of the structures, while in other cases, formation of extended defects such as twins has been observed in the interface region. The influence of dopants on the energy levels of Ga and O within the structures has been studied by XPS. Micro-Raman spectroscopy was used to assess the influence of Sn doping, and Sn-Cr codoping on the vibrational properties of single nanowires. Cathodoluminescence (CL) measurements show a Sn-related complex band in the Sn-doped structures. Temperature-dependent and excitation-density-dependent CL indicates that this is a thermally activated emission. In the Sn-Cr codoped samples, the characteristic, very intense Cr^3+ red luminescence emission quenches the bands observed in the Sn-doped samples. Branched, Sn-Cr codoped structures were studied with microphotoluminescence imaging and spectroscopy, and waveguiding behavior was observed along the trunks and branches of these structures.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25245
dc.identifier.doi10.1021/jp3093989
dc.identifier.issn1932-7447
dc.identifier.officialurlhttp://dx.doi.org/10.1021/jp3093989
dc.identifier.relatedurlhttp://pubs.acs.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33522
dc.issue.number6
dc.journal.titleJournal of Physical Chemistry C
dc.language.isoeng
dc.page.final3040
dc.page.initial3036
dc.publisherAmer Chemical Soc
dc.relation.projectIDMAT 2009-07882
dc.relation.projectIDConsolider Ingenio CSD 2009-00013
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordScanning-Electron-Microscope
dc.subject.keywordGallium Oxide
dc.subject.keywordNanostructures
dc.subject.keywordBeta-Ga_2O_3
dc.subject.keywordCathodoluminescence
dc.subject.keywordHeterojunctions
dc.subject.keywordField
dc.subject.ucmFísica de materiales
dc.titleInfluence of Sn and Cr Doping on Morphology and Luminescence of Thermally Grown Ga_2O_3 Nanowires
dc.typejournal article
dc.volume.number117
dcterms.references(1) Barth, S.; Hernandez-Ramirez, F.; Holmes, J. D.; Romano-Rodriguez, A. Prog. Mater. Sci. 2010, 55, 563−627. (2) Lu, J. G.; Chang, P.; Fan, Z. Mater. Sci. Eng., R 2006, 52, 49−91. (3) Feng, P.; Zhang, J. Y.; Li, Q. H.; Wang, T. H. Appl. Phys. Lett. 2006, 88, 153107-1−153107-3. (4) Vanithakumari, S. C.; Nanda, K. K. Adv. Mater. 2009, 21, 1−4. (5) Nogales, E.; Garcia, J. A.; Mendez, B.; Piqueras, J. Appl. Phys. Lett. 2007, 91, 133108-1−133108-3. (6) Nogales, E.; Mendez, B.; Piqueras, J. Ultramicroscopy 2011, 111, 1037−1042. (7) Shimamura, K.; Víllora, E. G.; Ujiie, T.; Aoki, K. Appl. Phys. Lett. 2008, 92, 201914-1−201914-3. (8) Varley, J. B.; Weber, J. R.; Janotti, A.; Van de Walle, C. G. Appl. Phys. Lett. 2010, 97, 142106-1−142106-3. (9) Ronning, C.; Borschel, C.; Geburt, S.; Niepelt, R. Mater. Sci. Eng., R 2010, 70, 30−43. (10) Maximenko, S. I.; Mazeina, L.; Picard, Y. N.; Freitas, J. A.; Bermudez, V. M.; Prokes, S. M. Nano Lett. 2009, 9, 3245−3251. (11) Higashiwaki, M.; Sasaki, K.; Kuramata, A.; Masui, T.; Yamakoshi, S. Appl. Phys. Lett. 2012, 100, 013504−1−013504−3. (12) Lopez, I.; Nogales, E.; Hidalgo, P.; Mendez, B.; Piqueras, J. Phys. Status Solidi A 2012, 209, 113−117. (13) Miyata, T.; Nakatani, T.; Minami, T. J. Lumin. 2000, 87−89, 1183−1185. (14) Nogales, E.; Mendez, B.; Piqueras, J.; Garcıa, J. A. Nanotechnology 2009, 20, 115201-1−115201-5. (15) Wang, J.; Zhuang, H.; Zhang, X.; Zhang, S.; Li, J. Vacuum 2011, 85, 802−805. (16) Nogales, E.; Garcia, J. A.; Mendez, B.; Piqueras, J. J. Appl. Phys. 2007, 101, 033517-1−033517-4. (17) Hidalgo, P.; Mendez, B.; Piqueras, J. Nanotechnology 2008, 19, 455705−1−455705−5. (18) Diaz, J.; Lopez, I.; Nogales, E.; Mendez, B.; Piqueras, J. J. Nanopart. Res. 2011, 13, 1833−1839. (19) Zheng, J. Y.; Yan, Y.; Wang, X.; Zhao, Y. S.; Huang, J.; Yao, J. J. Am. Chem. Soc. 2012, 134, 2880−2883. (20) Dohy, D.; Lucazeau, G.; Revcolevschi, A. J. Solid State Chem. 1982, 45, 180−192. (21) López, I.; Utrilla, A. D.; Nogales, E.; Mendez, B.; Piqueras, J.; Peche, A.; Ramirez-Castellanos, J.; Gonzalez-Calbet, J. M. J. Phys. Chem. C 2012, 116, 3935−3943. (22) Raman Scattering in Materials Science; Weber, W. H., Merlin, R., Eds.; Springer: New York, 2010. (23) Yeom, T. H.; Kim, I. G.; Lee, S. H.; Choh, S. H.; Yu, Y. M. J. Appl. Phys. 2003, 93, 3315−3319. (24) Kwoka, M.; Ottaviano, L.; Passacantando, M.; Santucci, S.; Czempik, G.; Szuber, J. Thin Solid Films 2005, 490, 36−42. (25) http://srdata.nist.gov/xps (26) Binet, L.; Gourier, D. J. Phys. Chem. Solids 1998, 59, 1241−1249. (27) Nogales, E.; Hidalgo, P.; Lorenz, K.; Mendez, B.; Piqueras, J.; Alves, E. Nanotechnology 2011, 22, 285706-1−285706-7. (28) Mieszawska, A. J.; Jalilian, R.; Sumanasekera, G. U.;Zamborini, F. P. Small 2007, 3, 722−756. (29) Kurt, H.; Giden, I. H.; Citrin, D. S. Opt. Express 2011, 19, 26827−26838. (30) López, I.; Nogales, E.; Mendez, B.; Piqueras, J. Appl. Phys. Lett. 2012, 100, 261910−1−261910−3.
dspace.entity.typePublication
relation.isAuthorOfPublicationf65096c2-6796-43bf-a661-9e2079b73d1c
relation.isAuthorOfPublication465cfd5b-6dd4-4a48-a6e3-160df06f7046
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoveryf65096c2-6796-43bf-a661-9e2079b73d1c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MendezBianchi90.pdf
Size:
3.11 MB
Format:
Adobe Portable Document Format

Collections