Logarithmic interpolation methods and measure of non-compactness

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We derive interpolation formulae for the measure of non-compactness of operators interpolated by logarithmic methods with [θ] = 0; 1 between quasi-Banach spaces. Applications are given to operators between Lorentz-Zygmund spaces.
[1] W. Amrein, A. Boutet de Monvel and V. Georgescu, C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Springer, Basel, 1996. [2] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988. [3] C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. 175 (1980), 1-72. [4] J. Bergh and J. L�ofstr�om, Interpolation Spaces. An introduction, Springer, Berlin, 1976. [5] B.F. Besoy, On compactness theorems for logarithmic interpolation methods, Proceedings of the Conference Function Spaces XII, Banach Center Publ. (to appear). [6] B.F. Besoy and F. Cobos, Duality for logarithmic interpolation spaces when 0 < q < 1 and applications, J. Math. Anal. Appl. 466 (2018), 373-399. [7] B.F. Besoy and F. Cobos, Interpolation of the measure of non-compactness of bilinear operators among quasi-Banach spaces, J. Approx. Theory 243 (2019), 25-44. [8] Y. Brudny�� and N. Krugljak, Interpolation Functors and Interpolation Spaces, Vol. 1, North-Holland, Amsterdam, 1991. [9] P.L. Butzer and H. Berens, Semi-Groups of Operators and Approximation, Springer-Verlag, Berlin, 1967. [10] A.P. Calder�on, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113{190. [11] F. Cobos, Interpolation theory and compactness, in Function Spaces, Inequalities and Interpolation. Edited by J. Lukes and L. Pick, Paseky, Prague 2009, pp. 31-75. [12] F. Cobos, L.M. Fern�andez-Cabrera and A. Mart��nez, Abstract K and J spaces and measure of non-compactness, Math. Nachr. 280 (2007), 1698-1708. [13] F. Cobos, L.M. Fern�andez-Cabrera and A. Mart��nez, On a paper of Edmunds and Opic on limiting interpolation of compact operators between Lp spaces, Math. Nachr. 288 (2015), 167-175. [14] F. Cobos, L.M. Fern�andez-Cabrera and A. Mart��nez, Measure of non-compactness of operators interpolated by limiting real methods, in Operator Theory: Advances and Applications, 219, Springer, Basel 2012, pp. 37{54. [15] F. Cobos, L.M. Fern�andez-Cabrera and A. Mart��nez, Estimates for the spectrum on logarithmic interpolation spaces, J. Math. Anal. Appl. 437 (2016), 292-309. [16] F. Cobos, L.M. Fern�andez-Cabrera, T. K�uhn and T. Ullrich, On an extreme class of real interpolation spaces, J. Funct. Anal. 256 (2009), 2321-2366. [17] F. Cobos, P. Fern�andez-Mart��nez and A. Mart��nez, Interpolation of the measure of non-compactnes by the real method, Studia Math. 135 (1999), 25-38. [18] F. Cobos, T. K�uhn and T. Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors, J. Funct. Anal. 106 (1992), 274-313. [19] F. Cobos and J. Peetre, Interpolation of compactness using Aronszajn-Gagliardo functors, Israel J. Math. 68 (1989), 220-240. [20] F. Cobos and A. Segurado, Description of logarithmic interpolation spaces by means of the J- functional and applications, J. Funct. Anal. 268 (2015), 2906-2945. [21] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994. [22] J.M. Cordeiro, Interpolaci�on de Ciertas Clases de Operadores por M�etodos Multidimensionales, Ph. D. thesis, Publicaciones del Depto. de Matem�atica Aplicada, Universidad de Vigo, 1999. [23] M. Cwikel, Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65 (1992), 333-343. [24] R.Ya. Doktorskii, Reiteration relations of the real interpolation method, Soviet Math. Dokl. 44 (1992), 665-669. [25] D.E. Edmunds and W.D. Evans, Hardy Operators, Function Spaces and Embeddings, Springer, Berlin 2004. [26] D.E. Edmunds and Yu. Netrusov, Entropy numbers and interpolation, Math. Ann. 351 (2011), 963-977. [27] D.E. Edmunds and Yu. Netrusov, Entropy numbers of operators acting between vector-valued sequence spaces, Math. Nachr. 286 (2013), 614-630. [28] D.E. Edmunds and B. Opic, Limiting variants of Krasnoselski��'s compact interpolation theorem, J. Funct. Anal. 266 (2014), 3265-3285. [29] W.D. Evans and B. Opic, Real interpolation with logarithmic functors and reiteration, Canad. J. Math. 52 (2000), 920-960. [30] W.D. Evans, B. Opic and L. Pick, Real interpolation with logarithmic functors, J. Inequal. Appl. 7 (2002), 187-269. [31] J. Gustavsson, A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978), 289-305. [32] H. K�onig, Eigenvalue Distribution of Compact Operators, Birkh�auser, Basel, 1986. [33] G. K�othe, Topological Vector Spaces I, Springer, Berlin, 1969. [34] M.A. Krasnosel'ski��, On a theorem of M. Riesz, Dokl. Akad. Nauk SSSR. 131 (1960), 246-248. [35] J.L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. Inst. Hautes Etudes Sci. 19 (1964), 5-68. [36] M. Masty lo and E.B. Silva, Interpolation of the measure of non-compactness of bilinear operators, Trans. Amer. Math. Soc. 370 (2018), 8979-8997. [37] P. Nilsson, Reiteration theorems for real interpolation and approximation spaces, Ann. Mat. Pura Appl. 132 (1982), 291-330. [38] B. Opic and L. Pick, On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl. 2 (1999), 391- 467. [39] L.E. Persson, Interpolation with a parameter function, Math. Scand. 59 (1986), 199-222. [40] M. Schechter, Principles of Functional Analysis, Amer. Math. Soc., Providence, 2001. [41] R. Szwedek, Measure of non-compactness of operators interpolated by the real method, Studia Math. 175 (2006), 157-174. [42] R. Szwedek, On interpolation of the measure of non-compactness by the complex method, Quart. J. Math. Oxford 66 (2015), 323-332. [43] R. Szwedek, Geometric interpolation of entropy numbers, Quart. J. Math. Oxford 69 (2018), 377- 389. [44] M.F. Teixeira and D.E. Edmunds, Interpolation theory and measures of non-compactness, Math. Nachr. 104 (1981), 129-135. [45] H. Triebel, Interpolation Theory, Function Spaces, Di�erential Operators, North-Holland, Amsterdam, 1978. [46] H. Triebel, Theory of Function Spaces II, Birkh�auser, Basel, 1992.