Correlation dimension of high-dimensional and high-definition experimental time series

dc.contributor.authorMakarov Slizneva, Valeriy
dc.contributor.authorMuñoz, Ricardo
dc.contributor.authorHerreras, Oscar
dc.contributor.authorMakarova, Julia
dc.date.accessioned2026-01-14T15:39:40Z
dc.date.available2026-01-14T15:39:40Z
dc.date.issued2023
dc.description.abstractThe correlation dimension (CD) is a nonlinear measure of the complexity of invariant sets. First introduced for describing low-dimensional chaotic attractors, it has been later extended to the analysis of experimental electroencephalographic (EEG), magnetoencephalographic (MEG), and local field potential (LFP) recordings. However, its direct application to high-dimensional (dozens of signals) and high-definition (kHz sampling rate) 2HD data revealed a controversy in the results. We show that the need for an exponentially long data sample is the main difficulty in dealing with 2HD data. Then, we provide a novel method for estimating CD that enables orders of magnitude reduction of the required sample size. The approach decomposes raw data into statistically independent components and estimates the CD for each of them separately. In addition, the method allows ongoing insights into the interplay between the complexity of the contributing components, which can be related to different anatomical pathways and brain regions. The latter opens new approaches to a deeper interpretation of experimental data. Finally, we illustrate the method with synthetic data and LFPs recorded in the hippocampus of a rat.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1063/5.0168400
dc.identifier.officialurlhttps://doi.org/10.1063/5.0168400
dc.identifier.urihttps://hdl.handle.net/20.500.14352/130234
dc.issue.number12
dc.journal.titleChaos
dc.language.isoeng
dc.page.initial123114
dc.publisherAIP Publishing
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordData-Driven Models
dc.subject.keywordAnalysis of Complex Systems
dc.subject.ucmEstadística aplicada
dc.subject.unesco1209.15 Series Temporales
dc.titleCorrelation dimension of high-dimensional and high-definition experimental time series
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number33
dspace.entity.typePublication
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscoverya5728eb3-1e14-4d59-9d6f-d7aa78f88594

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023_Chaos_Mak_etal-3.pdf
Size:
6.54 MB
Format:
Adobe Portable Document Format

Collections