Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Explainable Anomaly Detection in Spacecraft Telemetry

dc.contributor.authorGonzalo Farias
dc.contributor.authorSara Cuéllar
dc.contributor.authorSantos Peñas, Matilde
dc.contributor.authorFernando Alonso-Zotes
dc.contributor.authorErnesto Fábregas
dc.date.accessioned2024-09-13T13:58:27Z
dc.date.available2024-09-13T13:58:27Z
dc.date.issued2024-07-01
dc.description.abstractAs spacecraft missions become more complex and ambitious, it becomes increasingly important to track the status and health of the spacecraft in real-time to ensure mission success. Anomaly detection is a crucial part of spacecraft telemetry analysis, allowing engineers to quickly identify unexpected or abnormal behaviour reflected on spacecraft data and take appropriate corrective action. Traditional statistical methods based on threshold setting are often inadequate for detecting anomalies in this context, requiring the development of more sophisticated techniques that can handle the high-dimensional, non-linear, and non-stationary nature of spacecraft telemetry data such as machine learning-based techniques. This article presents an approach for anomaly detection using machine-learning techniques for spacecraft telemetry. The identification of anomaly types present on two real telemetry datasets from NASA is performed to incorporate information of magnitude, frequency, and waveform from known anomalies into the feature extraction process. Then, a machine-learningbased model is trained with the obtained features and tested with unknown real data. The proposed method achieves 95.3% of precision and 100% of Recall, giving a 𝐹0.5 score of 96.2% in both datasets, outperforming the metrics obtained on the existing related works, demonstrating that the inclusion of known anomalies can improve the performance of the data-driven models. Finally, an explainability analysis is performed to understand why a particular data instance has been identified as anomalous, proving the effectiveness of the feature extraction process.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationCuéllar S, Santos M, Alonso F, Fabregas E, Farias G. Explainable anomaly detection in spacecraft telemetry. Engineering Applications of Artificial Intelligence. 2024 Jul 1;133:108083.
dc.identifier.doihttps://doi.org/10.1016/j.engappai.2024.108083
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108139
dc.issue.number108083
dc.journal.titleEngineering Applications of Artificial Intelligence
dc.language.isoeng
dc.page.final15
dc.page.initial1
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordAnomaly detection
dc.subject.keywordSpacecraft telemetry
dc.subject.keywordExplainable machine learning
dc.subject.keywordTime-series analysis
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco3301 Ingeniería y Tecnología Aeronáuticas
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleExplainable Anomaly Detection in Spacecraft Telemetry
dc.typejournal article
dc.volume.number133
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EAAI 2024 Telemetry.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format

Collections