Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Cathodoluminescence microscopic studies of α-HgI_2 platelets and crystals

dc.contributor.authorPal, U.
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorSerrano, M. D.
dc.contributor.authorSochinskii, N. V.
dc.date.accessioned2023-06-20T19:05:57Z
dc.date.available2023-06-20T19:05:57Z
dc.date.issued1995
dc.description© Springer Verlag
dc.description.abstractCathodoLuminescence studies (CL) have been carried out on red mercuric-iodide (α-HgI_2) crystals and platelets grown by the vapor transport method. Panchromatic CL images revealed inhomogeneous distribution of growth-induced dislocations and terraces. The effect of prolonged KI (20%) treatment on the evolution of different CL bands has been investigated. CL spectra of the platelets at 80 K showed three luminescence bands at about 546, 567 and 624 nm. The intensity of the 567 nm band (band II) decreased after KI treatment, thus indicating the role of I vacancies on the evolution of this band. An additional band at about 555 nm is observed in as-grown crystals, but not revealed in platelets. Increase of the relative intensity of band III (624 nm) on prolonged KI treatment indicates the association of some surface states on this band along with the effect of impurities as reported earlier. Hg treatment causes an increase of total CL intensity and also the relative intensity of band II in platelets and crystals.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26823
dc.identifier.citationPal, U., Piqueras, J., Serrano, M.D. et al. Cathodoluminescence microscopic studies of α-HgI2 platelets and crystals. Appl. Phys. A 61, 645–649 (1995). https://doi.org/10.1007/BF01542877
dc.identifier.doi10.1007/s003390050254
dc.identifier.issn0721-7250
dc.identifier.officialurlhttp://dx.doi.org/10.1007/s003390050254
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59243
dc.issue.number6
dc.journal.titleApplied Physics A-Materials Science & Processing
dc.page.final649
dc.page.initial645
dc.publisherSpringer Verlag
dc.rights.accessRightsmetadata only access
dc.subject.cdu538.9
dc.subject.keywordMaterials Science
dc.subject.keywordMultidisciplinary
dc.subject.keywordPhysics
dc.subject.keywordApplied
dc.subject.ucmFísica de materiales
dc.titleCathodoluminescence microscopic studies of α-HgI_2 platelets and crystals
dc.typejournal article
dc.volume.number61
dcterms.references1. W.R. Willing: Nucl. Instrum. Methods96, 615 (1971) 2. H.L. Malm: IEEE Trans. NS-19, 263 (1972) 3. J.P. Ponpon, R. Stuck, P. Siffert, Nucl. Instrum. Methods119, 197 (1974) 4. H.L. Malm, T.W. Raudoff, M. Martina, K.R. Zanio: IEEE Trans. NS-20, 500 (1973) 5. R.B. James, D.K. Ottesen, D. Wong, T.E. Schlesinger, W.F. Schnepple, E. Ortale, L. Van de Berg: Nucl. Instrum. Methods A283, 188 (1989) 6. Z.L. Wu, J.L. Merz, L. Van de Berg, W.F. Schneppl: J. Lum.24/25, 197 (1981) 7. D. Wong, T.E. Schlesinger, R.B. James, E. Ortalc, L. Van de Berg, W.F. Schnepple: J. Appl. Phys.64, 2049 (1988) 8. I. Kh. Akopyan, B.V. Bondarenko, B.A. Karennov, B.V. Novikov: Sov. Phys.-Solid State29, 238 (1987) 9. Y.F. Nicolau, M. Dupuy: Nucl. Instrum. Methods A283, 355 (1989) 10. T. Kobayashi, J.T. Muheim, P. Waegli, E. Kaldis: J. Electrochem. Soc.,130, 1183 (1983) 11. Y.F. Nicolau, M. Dupuy, Z. Kabosch: Nucl. Instrum. Methods A283, 149 (1989) 12. P.M. Petroff, Yu Peng Hu, F. Millstein: J. Appl. Phys.66, 2525 (1989) 13. M.D. Serrano, M.T. Santos, E. Dieguez, S.N. Toubektsis, M.F. Daviti, E.K. Polychroniadis: Cryst. Res. Technol.29, 525 (1994) 14. A. Cremades, F. Dominguez-Adame, J. Piqueras: J. Appl. Phys.74, 5726 (1993) 15. A. Mashimoto, F. Hayashi, T. Uematsu, Y. Moriyoshi: J. Mater. Sci.1, 4 (1982) 16. K. Tsukamoto, B. Van der Hock: J. Cryst. Growth57, 131 (1982) 17. Y.M. Gerasimov, G.I. Distler, V.M. Kanevsky, E.I. Kortukova, E.I. Suvorova, T.M. Okhrimenko, G.S. Belikova: Cryst. Res. Technol.18, 1283 (1983) 18. A.Y. Bunkin, A.A. Frolov: J. Cryst. Growth69, 131 (1984) 19. S.K. Behal, R.R. Chianelli, B.H. Kear: Mater. Lett.3, 381 (1985) 20. R. Rodriguez, M. Aguilo, J. Tejada: J. Cryst. Growth47, 518 (1979) 21. E. Bauser, H.P. Strunk: J. Cryst. Growth69, 561 (1984) 22. Y.C. Lu, E. Bauser: J. Cryst. Growth71, 305 (1985) 23. R.H. Bube: Phys. Rev.106, 703 (1957) 24. B.V. Novikov, M.M. Pimonenko: Sov. Phys.-Semicond.46, 671 (1972) 25. X.J. Bao, T.E. Schlesinger, R.B. James, C. Ortale, L. Van den Berg: J. Appl. Phys.68, 2951 (1990) 26. J.L. Merz, Z.L. Wu, L. Van den Berg, W.F. Schnepple: Nucl. Instrum. Methods51, 51 (1983) 27. R.B. James, X.J. Bao, T.E. Schlesinger, J.M. Markakis, A.Y. Cheng, C. Ortale: J. Appl. Phys.66, 2578 (1989)
dspace.entity.typePublication
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscovery68dabfe9-5aec-4207-bf8a-0851f2e37e2c

Download

Collections