An approach to multiway contingency tables based on phi-divergence test statistics

dc.contributor.authorPardo Llorente, Julio Ángel
dc.date.accessioned2023-06-20T00:22:21Z
dc.date.available2023-06-20T00:22:21Z
dc.date.issued2010-11
dc.description.abstractIn this paper, we consider independence models for three-dimensional tables under multinomial sampling. We use the restricted minimum phi-divergence estimator in a phi-divergence statistic, which is the basis of some new test statistics, for solving the classical problem of testing independence in three-dimensional contingency tables.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17647
dc.identifier.doi10.1016/j.jmva.2010.06.003
dc.identifier.issn0047-259X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0047259X10001223#
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42471
dc.issue.number10
dc.journal.titleJournal of multivariate analysis
dc.language.isoeng
dc.page.final2319
dc.page.initial2305
dc.publisherElsevier
dc.relation.projectIDMTM2009-06997
dc.relation.projectIDBSCH-UCM-2008-910707(GR58/08)
dc.rights.accessRightsrestricted access
dc.subject.cdu519.237
dc.subject.keywordThree-dimensional contingency table
dc.subject.keywordphi-divergence measure
dc.subject.keywordIndependence
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleAn approach to multiway contingency tables based on phi-divergence test statistics
dc.typejournal article
dc.volume.number101
dcterms.referencesA. Agresti, Categorical Data Analysis, John Wiley, 1990. S.M. Ali, S.D. Silvey, A general class of coefficients of divergence of one distribution from another, Journal of the Royal Statistical Society, Series B 26 (1966) 131-142. E.B. Andersen, Introduction to the Statistical Analysis of Categorical Data, Springer-Verlag, 1998. M.S. Bartlett, Contingency table interactions, Supplement to the Journal of the Royal Statistical Society 2 (2) (1935) 248-252. E.J. Beh, B. Simonetti, L. D'Ambra, Partitioning a non-symmetric measure of association for three way contingency tables, Journal of Multivariate Analysis 98 (7) (2007) 1391-1411. V.P. Bhapkar, G.G. Koch, Hypothesis of `no interaction' in multidimensional contingency tables, Technometrics 10 (1968) 107-123. A. Bhattacharyya, On a measure of divergence between two statistical populations defined by their probability distribution, Bulletin of the Calcutta Mathematical Society 35 (1946) 99-104. M.W. Birch, A new proof of the Pearson-Fisher theorem, Annals of Mathematical Statistics 35 (1964) 817-824. R. Christensen, Log-Linear Models and Logistic Regression, Springer-Verlag, 1997. N. Cressie, T.R.C. Read, Multinomial goodness-of-fit tests, Journal of the Royal Statistical Society, Series B 46 (1984) 440-464. I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität on Markhoffschen Ketten, Publications of the Mathematical Institute of Hungarian Academy of Sciences, Series A 8 (1963) 85-108. J.R. Dale, Asymptotic normality of goodness-of-fit statistics for sparse product multinomials, Journal of the Royal Statistical Society, Series B 41 (1986)48-59. E.L. Diamond, S.K. Mitra, S.N. Roy, Asymptotic power and asymptotic independence in the statistical analysis of categorical data, Bulletin de l'Institud International de Statistique 37 (3) (1960) 309-329. B.S. Everitt, The Analysis of Contingency Tables, Chapman & Hall, 2001. D.H. Freeman, Applied Categorical Data Analysis, Marcel Dekker, 1987. D.V. Gokhale, S. Kullback, Iterative maximum likelihood estimation for discrete distributions, Sankhya 35 (1978) 293-298. Z. Gilula, J. Haberman, Canonical analysis of contingency tables by maximum likelihood, Journal of the American Statistical Association 81 (1986) 780-788. 395. N.S. Johnson, C� method for testing significance in the rxc contingency table, Journal of the American Statistical Association 70 (352) (1975) 942-947. M.L. Menéndez, J.A. Pardo, L. Pardo, Tests based on phi-divergences for bivariate symmetry, Metrika 53 (2001) 15-29.
dspace.entity.typePublication
relation.isAuthorOfPublication5e051d08-2974-4236-9c25-5e14369a7b61
relation.isAuthorOfPublication.latestForDiscovery5e051d08-2974-4236-9c25-5e14369a7b61

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PardoJulio01.pdf
Size:
407.47 KB
Format:
Adobe Portable Document Format

Collections