Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An approach to multiway contingency tables based on phi-divergence test statistics

dc.contributor.authorPardo Llorente, Julio Ángel
dc.date.accessioned2023-06-20T00:22:21Z
dc.date.available2023-06-20T00:22:21Z
dc.date.issued2010-11
dc.description.abstractIn this paper, we consider independence models for three-dimensional tables under multinomial sampling. We use the restricted minimum phi-divergence estimator in a phi-divergence statistic, which is the basis of some new test statistics, for solving the classical problem of testing independence in three-dimensional contingency tables.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17647
dc.identifier.doi10.1016/j.jmva.2010.06.003
dc.identifier.issn0047-259X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0047259X10001223#
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42471
dc.issue.number10
dc.journal.titleJournal of multivariate analysis
dc.language.isoeng
dc.page.final2319
dc.page.initial2305
dc.publisherElsevier
dc.relation.projectIDMTM2009-06997
dc.relation.projectIDBSCH-UCM-2008-910707(GR58/08)
dc.rights.accessRightsrestricted access
dc.subject.cdu519.237
dc.subject.keywordThree-dimensional contingency table
dc.subject.keywordphi-divergence measure
dc.subject.keywordIndependence
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleAn approach to multiway contingency tables based on phi-divergence test statistics
dc.typejournal article
dc.volume.number101
dcterms.referencesA. Agresti, Categorical Data Analysis, John Wiley, 1990. S.M. Ali, S.D. Silvey, A general class of coefficients of divergence of one distribution from another, Journal of the Royal Statistical Society, Series B 26 (1966) 131-142. E.B. Andersen, Introduction to the Statistical Analysis of Categorical Data, Springer-Verlag, 1998. M.S. Bartlett, Contingency table interactions, Supplement to the Journal of the Royal Statistical Society 2 (2) (1935) 248-252. E.J. Beh, B. Simonetti, L. D'Ambra, Partitioning a non-symmetric measure of association for three way contingency tables, Journal of Multivariate Analysis 98 (7) (2007) 1391-1411. V.P. Bhapkar, G.G. Koch, Hypothesis of `no interaction' in multidimensional contingency tables, Technometrics 10 (1968) 107-123. A. Bhattacharyya, On a measure of divergence between two statistical populations defined by their probability distribution, Bulletin of the Calcutta Mathematical Society 35 (1946) 99-104. M.W. Birch, A new proof of the Pearson-Fisher theorem, Annals of Mathematical Statistics 35 (1964) 817-824. R. Christensen, Log-Linear Models and Logistic Regression, Springer-Verlag, 1997. N. Cressie, T.R.C. Read, Multinomial goodness-of-fit tests, Journal of the Royal Statistical Society, Series B 46 (1984) 440-464. I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität on Markhoffschen Ketten, Publications of the Mathematical Institute of Hungarian Academy of Sciences, Series A 8 (1963) 85-108. J.R. Dale, Asymptotic normality of goodness-of-fit statistics for sparse product multinomials, Journal of the Royal Statistical Society, Series B 41 (1986)48-59. E.L. Diamond, S.K. Mitra, S.N. Roy, Asymptotic power and asymptotic independence in the statistical analysis of categorical data, Bulletin de l'Institud International de Statistique 37 (3) (1960) 309-329. B.S. Everitt, The Analysis of Contingency Tables, Chapman & Hall, 2001. D.H. Freeman, Applied Categorical Data Analysis, Marcel Dekker, 1987. D.V. Gokhale, S. Kullback, Iterative maximum likelihood estimation for discrete distributions, Sankhya 35 (1978) 293-298. Z. Gilula, J. Haberman, Canonical analysis of contingency tables by maximum likelihood, Journal of the American Statistical Association 81 (1986) 780-788. 395. N.S. Johnson, C� method for testing significance in the rxc contingency table, Journal of the American Statistical Association 70 (352) (1975) 942-947. M.L. Menéndez, J.A. Pardo, L. Pardo, Tests based on phi-divergences for bivariate symmetry, Metrika 53 (2001) 15-29.
dspace.entity.typePublication
relation.isAuthorOfPublication5e051d08-2974-4236-9c25-5e14369a7b61
relation.isAuthorOfPublication.latestForDiscovery5e051d08-2974-4236-9c25-5e14369a7b61

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PardoJulio01.pdf
Size:
407.47 KB
Format:
Adobe Portable Document Format

Collections