Cooperative hydrogenation catalysis at a constrained gallylene-nickel(0) interface

dc.contributor.authorKalkuhl, Till
dc.contributor.authorFernández López, Israel
dc.contributor.authorHadlington, Terrance
dc.date.accessioned2025-05-20T10:16:56Z
dc.date.available2025-05-20T10:16:56Z
dc.date.issued2025
dc.description.abstractThe discovery of unique mechanisms in 3d metal catalysis is of paramount importance in utilizing these Earth-abundant metals in place of scarce precious metals. Inspired by the Horiuti-Polanyi mechanism at play in heterogeneous hydrogenation catalysts, we describe a bimetallic molecular catalyst that can selectively semi-hydrogenate alkynes via a ligand-to-substrate hydride transfer mechanism. This mimics established heterogeneous mechanisms in which remote surface-bound hydride ligands undergo a similar reactive process. This is achieved through the development of a chelate-constrained gallium(I) ligand, which operates in concert with nickel(0) to (reversibly) cleave H2, generating a [GaNi] 1,2-dihydride complex that is found to be the resting state in the catalytic process. This discovery takes steps toward utilizing non-innocent low-valent group 13 centers in effective cooperative catalysis, opening new mechanistic pathways that may aid in employing Earth-abundant metals in key catalytic transformations
dc.description.departmentDepto. de Química Orgánica
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipFondo de la industria química (FCI)
dc.description.sponsorshipUniversidad de Munich
dc.description.statuspub
dc.identifier.citationKalkuhl, Till L., et al. «Cooperative hydrogenation catalysis at a constrained gallylene-nickel(0) interface». Chem, vol. 11, n.o 4, abril de 2025, p. 102349. ScienceDirect, https://doi.org/10.1016/j.chempr.2024.10.016.
dc.identifier.doi10.1016/j.chempr.2024.10.016
dc.identifier.officialurlhttps://doi.org/10.1016/j.chempr.2024.10.016
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S2451929424005424
dc.identifier.urihttps://hdl.handle.net/20.500.14352/120252
dc.journal.titleChem
dc.language.isoeng
dc.page.initial102349
dc.publisherCell-Elsevier
dc.relation.projectIDPID2022-139318NB-I00
dc.relation.projectID101076897
dc.relation.projectIDRED2022-134331-T
dc.relation.projectIDMICIU/AEI/10.13039/501100011033
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu547
dc.subject.keywordCooperative catalysis
dc.subject.keywordBimetallic catalysis
dc.subject.keywordHydrogen activation
dc.subject.keywordMetallo-ligands
dc.subject.keywordGallylene ligand
dc.subject.keywordSmall molecule activation
dc.subject.keywordSustainable catalysis
dc.subject.keywordNovel mechanisms
dc.subject.keywordKinetic analysis
dc.subject.keywordReversible activation
dc.subject.ucmQuímica
dc.subject.unesco23 Química
dc.titleCooperative hydrogenation catalysis at a constrained gallylene-nickel(0) interface
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublicationb2a789aa-d9bf-4564-b0e2-35b8de8d6d06
relation.isAuthorOfPublication.latestForDiscoveryb2a789aa-d9bf-4564-b0e2-35b8de8d6d06

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chem2025,11,102349.pdf
Size:
3.81 MB
Format:
Adobe Portable Document Format

Collections