Deep learning feature selection to unhide demographic recommender systems factors

dc.contributor.authorBobadilla, Jesús
dc.contributor.authorGonzález Prieto, José Ángel
dc.contributor.authorOrtega, Fernando
dc.contributor.authorLara Cabrera, Raúl
dc.date.accessioned2024-02-08T21:48:28Z
dc.date.available2024-02-08T21:48:28Z
dc.date.issued2023
dc.description.abstractExtracting demographic features from hidden factors is an innovative concept that provides multiple and relevant applications. The matrix factorization model generates factors which do not incorporate semantic knowledge. Extracting the existing nonlinear relations between hidden factors and demographic information is a challenging task that can not be adequately addressed by means of statistical methods or using simple machine learning algorithms. This paper provides a deep learning-based method: DeepUnHide, able to extract demographic information from the users and items factors in collaborative filtering recommender systems. The core of the proposed method is the gradient-based localization used in the image processing literature to highlight the representative areas of each classification class. Validation experiments make use of two public datasets and current baselines. The results show the superiority of DeepUnHide to make feature selection and demographic classification, compared to the state-of-art of feature selection methods. Relevant and direct applications include recommendations explanation, fairness in collaborative filtering and recommendation to groups of users.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.statuspub
dc.identifier.citationBobadilla, J., González-Prieto, Á., Ortega, F. et al. Deep learning feature selection to unhide demographic recommender systems factors. Neural Comput & Applic 33, 7291–7308 (2021). https://doi.org/10.1007/s00521-020-05494-2
dc.identifier.doi10.1007/s00521-020-05494-2
dc.identifier.essn1433-3058
dc.identifier.officialurlhttps://doi.org/10.1007/s00521-020-05494-2
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s00521-020-05494-2
dc.identifier.urihttps://hdl.handle.net/20.500.14352/100641
dc.journal.titleNeural Computing and Applications
dc.language.isoeng
dc.page.final7308
dc.page.initial7291
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//PID2019-106493RB-I00
dc.rights.accessRightsopen access
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmEstadística aplicada
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1209.03 Análisis de Datos
dc.titleDeep learning feature selection to unhide demographic recommender systems factorsen
dc.typejournal article
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAuthorOfPublicationc3011bfd-5025-4e49-8f0e-e16ea76da35c
relation.isAuthorOfPublication.latestForDiscoveryc3011bfd-5025-4e49-8f0e-e16ea76da35c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deep_learning_feature_selection.pdf
Size:
9.12 MB
Format:
Adobe Portable Document Format

Collections