Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Ion Implantation and Pulsed Laser Melting Processing for the Development of an Intermediate Band Material

dc.book.titleIon Implantation Technology
dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGarcía Hemme, Eric
dc.contributor.authorGarcía Hernansanz, Rodrigo
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorOlea Ariza, Javier
dc.contributor.authorPrado Millán, Álvaro Del
dc.date.accessioned2023-06-20T05:46:15Z
dc.date.available2023-06-20T05:46:15Z
dc.date.issued2012
dc.descriptionInternational Conference on Ion Implantation Technology ( 19.2012.Valladolid, España). © 2012 American Institute of Physics. Authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid for the ion implantations and metallic evaporations and the Nanotechnology and Surface Analysis Services of the Universidad de Vigo C.A.C.T.I. for ToF-SIMS measurements. This work was partially supported by the Project NUMANCIA II (Grant No. S-2009/ENE/1477) funded by the Comunidad de Madrid. Research by E. García-Hemme, was also supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). J. Olea and D. Pastor thanks Prof. A. Martí and Prof. A. Luque for useful discussions and guidance and acknowledge financial support from the MICINN within the program Juan de la Cierva (JCI-2011-10402 and JCI-2011-11471), under which this research was undertaken.
dc.description.abstractTi supersaturated Si layers with two different thicknesses have been obtained on the top of a Si substrate by means of ion implantation and pulsed laser melting processes. Time-of-flight Secondary Ion Mass spectrometry (ToF-SIMS) measurements show Ti concentration above the intermediate band formation limit. This feature has been obtained in 20 nm for one of the set of samples and in 120 nm in the other one. Sheet resistance measurements at variable temperature show an unusual electrical decoupling between the Ti implanted layer and the n-Si substrate in the two sets of samples. This behavior has been successfully explained using the intermediate band theory. These results points out that we have achieved thicker layers of intermediate band material.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMICINN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25815
dc.identifier.doi10.1063/1.4766488
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4766488
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45520
dc.language.isoeng
dc.page.final57
dc.page.initial54
dc.publisherAmerican Institute of Physics
dc.relation.projectIDNUMANCIA II (S2009/ENE-1477)
dc.relation.projectID(JCI-2011-10402)
dc.relation.projectID(JCI-2011-11471)
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordSilicon
dc.subject.keywordAlloys.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleIon Implantation and Pulsed Laser Melting Processing for the Development of an Intermediate Band Material
dc.typebook part
dc.volume.number1496
dcterms.references1) A. Luque and A. Martí, Phys. Rev. Lett. 78 (26), 5014-5017 (1997). 2) A. Martí, et al., Thin Solid Films 511, 638-644 (2006). 3) J. Wu, W. Shan and W. Walukiewicz, Semicond. Sci. Tech. 17 (8), 860-869 (2002). 4) E. Antolín, et al., Appl. Phys. Lett. 94 (4), 042115 (2009). 5) A. Luque, et al., Phys. B-Cond. Matter 382 (1-2), 320-327(2006). 6) K. Sánchez, et al., Phys. Rev. B 79 (16), 165203 (2009). 7) S. Hocine and D. Mathiot, Appl. Phys. Lett. 53 (14), 1269-1271 (1988). 8) C. W. White, et al., J. Appl. Phys. 51 (1), 738-749(1980). 9) J. Olea, et al., J. Appl. Phys. 104 (1), 016105 (2008). 10) J. Olea, et al., J. Appl. Phys. 109 (11), 113541 (2011). 11) J. Olea, et al., J. Appl. Phys. 107 (10), 103524 (2010). 12) D. Pastor, et al., Semicond. Sci. Tech. 26 (11) (2011). 13) J. Olea, et al., J. Appl. Phys. 109 (6), 8 (2011).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublication765f38c4-71cb-441b-b2a8-d88c5cdcf086
relation.isAuthorOfPublication838d6660-e248-42ad-b8b2-0599f3a4542b
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication12efa09d-69f7-43d4-8a66-75d05b8fe161
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication.latestForDiscovery838d6660-e248-42ad-b8b2-0599f3a4542b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IIT Proceeding.pdf
Size:
994.85 KB
Format:
Adobe Portable Document Format