Measurement of the cosmic ray energy spectrum using hybrid events of the Pierre Auger Observatory

dc.contributor.authorArganda, E.
dc.contributor.authorArqueros Martínez, Fernando
dc.contributor.authorBlanco Ramos, Francisco
dc.contributor.authorGarcía Pinto, Diego
dc.contributor.authorMinaya Flores, Ignacio Andrés
dc.contributor.authorOrtiz Ramis, Montserrat
dc.contributor.authorRosado Vélez, Jaime
dc.contributor.authorVázquez Peñas, José Ramón
dc.date.accessioned2023-06-20T04:14:22Z
dc.date.available2023-06-20T04:14:22Z
dc.date.issued2012-08
dc.description© Societá Italiana di Fisica / Springer-Verlag 2012. Autoría conjunta: Pierre Auger Collaboration. Artículo firmado por más de 10 autores. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LG11044, MEB111003, MSM0021620859, LA08015 and TACR TA01010517, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, National Science Foundation, Grant No. 0450696, The Grainger Foundation USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO.
dc.description.abstractThe energy spectrum of ultra-high energy cosmic rays above 10(18)eV is measured using the hybrid events collected by the Pierre Auger Observatory between November 2005 and September 2010. The large exposure of the Observatory allows the measurement of the main features of the energy spectrum with high statistics. Full Monte Carlo simulations of the extensive air showers (based on the CORSIKA code) and of the hybrid detector response are adopted here as an independent cross check of the standard analysis (Phys. Lett. B 685, 239 (2010)). The dependence on mass composition and other systematic uncertainties are discussed in detail and, in the full Monte Carlo approach, a region of confidence for flux measurements is defined when all the uncertainties are taken into account. An update is also reported of the energy spectrum obtained by combining the hybrid spectrum and that measured using the surface detector array.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMSMT-CR
dc.description.sponsorshipTACR, Czech Republic
dc.description.sponsorshipCentre de Calcul IN2P3/CNRS
dc.description.sponsorshipCentre National de la Recherche Scientifique (CNRS)
dc.description.sponsorshipConseil Regional Ile-de-France
dc.description.sponsorshipDepartement Physique Nucleaire et Corpusculaire, France
dc.description.sponsorshipDepartement Sciences de l'Univers (SDU-INSU/CNRS), France
dc.description.sponsorshipBundesministerium fur Bildung und Forschung (BMBF)
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)
dc.description.sponsorshipFinanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF)
dc.description.sponsorshipMinisterium fur Wissenschaft und Forschung Nordrhein-Westfalen
dc.description.sponsorshipMinisterium fur Wissenschaft, Forschung und Kunst
dc.description.sponsorshipIstituto Nazionale di Fisica Nucleare (INFN)
dc.description.sponsorshipBaden-Wurttemberg, Germany
dc.description.sponsorshipMinistero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy
dc.description.sponsorshipMinisterie van Onderwijs, Cultuur en Wetenschap, Netherlands
dc.description.sponsorshipNederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
dc.description.sponsorshipStichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands
dc.description.sponsorshipMinistry of Science and Higher Education, Poland
dc.description.sponsorshipPortuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal
dc.description.sponsorshipMinistry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia
dc.description.sponsorshipComunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha
dc.description.sponsorshipFEDER funds
dc.description.sponsorshipXunta de Galicia, Spain
dc.description.sponsorshipMinisterio de Ciencia e Innovacion and Consolider-Ingenio
dc.description.sponsorshipScience and Technology Facilities Council, United Kingdom
dc.description.sponsorshipDepartment of Energy
dc.description.sponsorshipUNESCO
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/38074
dc.identifier.citation1. HiRes Collaboration (R. Abbasi et al.), Phys. Rev. Lett. 100, 101101 (2008). 2. The Pierre Auger Collaboration, Phys. Lett. B 685, 239 (2010). 3. The Pierre Auger Collaboration, Phys. Rev. Lett. 101, 061101 (2008). 4. F. Salamida, for the Pierre Auger Collaboration, Proc. 32th ICRC 2011, Beijing, arXiv:1107.4809. 5. Telescope Array Collaboration, submitted to Phys. Rev. Lett., arXiv:1205.5067v1. 6. K. Greisen, Phys. Rev. Lett. 16, 748 (1966). 7. G.T. Zatsepin, V.A. Kuz’min, Pis’ma Zh. Eksp. Teor. Fiz. 4, 114 (1966). 8. J. Linsley, Proc. 8th ICRC, Jaipur 4, 77 (1963). 9. M.A. Lawrence, R.J.O. Reid, A.A. Watson, J. Phys. G 17, 733 (1991). 10. M. Nagano et al., J. Phys. G 18, 423 (1992). 11. D.J. Bird et al., Phys. Rev. Lett. 71, 3401 (1993). 12. A.M. Hillas, Cosmic Rays (Pergamon Press, Oxford, 1972). 13. T. Wibig, A.W. Wolfendale, J. Phys. G 31, 255 (2005). 14. A.M. Hillas, J. Phys. G 31, R95 (2005). 15. A.M. Hillas, Cosmic Rays: Recent Progress and some Current Questions, arXiv:0607109. 16. B. Peters, Nuovo Cimento 22, 800 (1961). 17. A.M. Hillas, Phys. Lett. A 24, 677 (1967). 18. G.R. Blumenthal, Phys. Rev. D 1, 1596 (1970). 19. V. Berezinsky, A.Z. Gazizov, S.I. Grigorieva, Phys. Rev. D 74, 043005 (2006). 20. V.S. Berezinsky, S.I. Grigorieva, B.I. Hnatyk, Astropart. Phys. 21, 617625 (2004). 21. The Pierre Auger Collaboration, Phys. Rev. Lett. 104, 091101 (2010). 22. P. Facal et al. for the Pierre Auger Collaboration, Proc. 32th ICRC 2011, Beijing, arXiv:1107.4804. 23. HiRes Collaboration (R. Abbasi et al.), Phys. Rev. Lett. 104, 161101 (2010). 24. HiRes/MIA Collaboration (T. Abu-Zayyad et al.), Astrophys. J. 557, 686 (2001). 25. Yakutsk Collaboration (S. Knurenko, A. Sabourov), Proc. XVI ISVHECRI, (2010). 26. Yakutsk Collaboration (S. Knurenko, A. Sabourov), Nucl. Phys. B 212-213, 241 (2011). 27. C. Jui et al. for the Telescope Array Collaboration, Proc. APS DPF Meeting, arXiv:1110.0133. 28. The Pierre Auger Collaboration, Astropart. Phys. 34, 368 (2011). 29. The Pierre Auger Collaboration, Nucl. Instrum. Methods Phys. Res. A 523, 50 (2004). 30. The Pierre Auger Collaboration, Nucl. Instrum. Methods Phys. Res. A 613, 29 (2010). 31. The Pierre Auger Collaboration, Nucl. Instrum. Methods Phys. Res. A 620, 227 (2010). 32. B.R. Dawson, M. Giller, G. Wieczorek, Proc. 30th ICRC 2007, Merida. 33. F. Nerling, J. Bluemer, R. Engel, M. Risse, Astropart. Phys. 24, 421 (2006). 34. M. Unger, B.R. Dawson, R. Engel, F. Schssler, R. Ulrich, Nucl. Instrum. Methods A 588, 433 (2008). 35. T. Gaisser, A. Hillas, Proc. 15th ICRC, Plovdiv 8, 353 (1977). 36. H.M.J. Barbosa, F. Catalani, J.A. Chinellato, C. Dobrigkeit, Astropart. Phys. 22, 159 (2004). 37. F. Sanchèz, for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4807. 38. I.C. Maris, for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4809. 39. H.J. Mathes, for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4807. 40. J. Rautenberg [Pierre Auger Collaboration], Proceedings of 31th Int. Cosmic Ray Conf. (ICRC 2009) arXiv:0906.2358. 41. S.Y. BenZvi et al., Nucl. Instrum. Methods Phys. Res. A 574, 171 (2007). 42. B. Fick et al., JINST) 1, 11003 (2006). 43. D. Heck et al., “CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers”, Report FZKA, 6019 (1998). 44. S. Ostapchenko, Phys. Lett. B 636, 40 (2006). 45. N.N. Kalmykov, S. Ostapchenko, Sov. J. Nucl. Phys. 50, 315 (1989). 46. T. Pierog, K. Werner, Phys. Rev. Lett. 101, 171101 (2008). 47. A. Fass`o et al., CERN-2005-10 (2005) INFN/TC 05/11, SLAC-R-773. 48. B. Keilhauer et al., Astropart. Phys. 22, 249 (2004). 49. J. Linsley, private communication by M. Hillas (1988). 50. S. Argirò et al., Nucl. Instrum. Methods Phys. Res. A 580, 1485 (2007). 51. L. Prado et al., Nucl. Instrum. Methods A 545, 632 (2005). 52. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003) IEEE Trans. Nucl. Sci. 53, 270 (2006). 53. The Pierre Auger Collaboration, Astropart. Phys. 35, 266 (2011). 54. M. Settimo for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4805. 55. The Pierre Auger Collaboration, Astropart. Phys. 29, 243 (2008). 56. T. Bergmann et al., Astropart. Phys. 26, 420 (2007). 57. K. Werner, F.M. Liu, T. Pierog, Phys. Rev. C 74, 044902 (2006). 58. K. Kamata, J. Nishimura, Prog. Theoret. Phys. Suppl. 6, 93 (1958). 59. K. Greisen, Prog. Cosmic Rays Phys. III, 26 (1965). 60. C. Di Giulio, for the Pierre Auger Collaboration, Proceedings of 31st Int. Cosmic Ray Conf. (ICRC 2009) arXiv:0906.2189. 61. E.-J. Ahn, R. Engel, T.K. Gaisser, P. Lipari, T. Stanev, Phys. Rev. D 80, 094003 (2009). 62. M. Nagano, K. Kobayakawa, N. Sakaki, K. Ando, Astropart. Phys. 20, 293 (2003). 63. A. Castellina, for the Pierre Auger Collaboration, Proceedings of 31th Int. Cosmic Ray Conf. (ICRC 2009) arXiv:0906.2319. 64. R. Pesce, for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4809.
dc.identifier.doi10.1140/epjp/i2012-12087-9
dc.identifier.issn2190-5444
dc.identifier.officialurlhttp://dx.doi.org/10.1140/epjp/i2012-12087-9
dc.identifier.relatedurlhttp://arxiv.org/abs/1208.6574
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45078
dc.issue.number8
dc.journal.titleEuropean physical journal plus
dc.language.isoeng
dc.publisherSpringer Heidelberg
dc.relation.projectIDEPLANET (246806)
dc.relation.projectIDLA08016
dc.relation.projectIDMEB111003
dc.relation.projectIDLG11044
dc.relation.projectIDMSM0021620859
dc.relation.projectIDLA08015
dc.relation.projectIDTA01010517
dc.relation.projectIDPNC-IN2P3/CNRS
dc.relation.projectIDN N202 200239
dc.relation.projectIDN N202 207238
dc.relation.projectIDDE-AC02-07CH11359
dc.relation.projectIDDE-FR02-04ER41300
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordExtensive air showers
dc.subject.keywordFluorescence detector
dc.subject.keywordSurface detector
dc.subject.keywordSimulation
dc.subject.keywordArray
dc.subject.keywordreconstruction
dc.subject.keywordProfiles
dc.subject.keywordTrigger.
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleMeasurement of the cosmic ray energy spectrum using hybrid events of the Pierre Auger Observatory
dc.typejournal article
dc.volume.number127
dspace.entity.typePublication
relation.isAuthorOfPublicatione6fd6d50-2946-45a9-a515-273dddff2091
relation.isAuthorOfPublicationfd97b031-5b10-40ab-beb5-8f192e632ca3
relation.isAuthorOfPublication7c75d106-b698-42ee-bfea-fe4a2b11b7f8
relation.isAuthorOfPublication8385de5d-023a-4c39-8d07-80f84fe48bcd
relation.isAuthorOfPublication32033072-414c-4448-b44b-98a6bd3e9321
relation.isAuthorOfPublication.latestForDiscoverye6fd6d50-2946-45a9-a515-273dddff2091
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arqueros31preprint.pdf
Size:
271.97 KB
Format:
Adobe Portable Document Format
Collections