Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Probing the infrared quark mass from highly excited baryons

dc.contributor.authorLlanes Estrada, Felipe José
dc.contributor.authorBicudo, Pedro
dc.contributor.authorCardoso, M
dc.date.accessioned2023-06-20T03:34:57Z
dc.date.available2023-06-20T03:34:57Z
dc.date.issued2009-08-28
dc.description© 2009 The American Physical Society. We thank L. Glozman for useful conversations and grants FPA 2008-00592/FPA, FIS2008-01323, CERN/FP/83582/2008, POCI/FP/81933/2007, /81913/2007, PDCT/FP/63907/2005, and /63923/2005, Spain-Portugal billateral grant HP2006-0018/E-56/07, as well as the Scientific Research Fund of Flanders.
dc.description.abstractWe argue that three-quark excited states naturally group into quartets, split into two parity doublets, and that the mass splittings between these parity partners decrease higher up in the baryon spectrum. This decreasing mass difference can be used to probe the running quark mass in the midinfrared power-law regime. A measurement of masses of high-partial-wave resonances should be sufficient to unambiguously establish the approximate degeneracy. We test this concept with the first computation of excited high-j baryon masses in a chirally invariant quark model.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpain-Portugal billateral
dc.description.sponsorshipScientific Research Fund of Flanders
dc.description.sponsorshipFPA
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22694
dc.identifier.doi10.1103/PhysRevLett.103.092003
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.103.092003
dc.identifier.relatedurlhttp://prl.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43951
dc.issue.number9
dc.journal.titlePhysical Review Letters
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectID2008-00592/FPA
dc.relation.projectIDFIS2008-01323
dc.relation.projectIDCERN/FP/83582/2008
dc.relation.projectIDPOCI/FP/81933/2007
dc.relation.projectIDPOCI/FP/81913/2007
dc.relation.projectIDPDCT/FP/63907/2005
dc.relation.projectIDPDCT/FP/63923/2005
dc.relation.projectIDHP2006-0018/E-56/07
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordChiral-Symmetry Breaking
dc.subject.keywordEffective Restoration
dc.subject.keywordMeson Spectrum
dc.subject.keywordModel
dc.subject.keywordConfinement
dc.subject.keywordLattice
dc.subject.keywordQcd
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleProbing the infrared quark mass from highly excited baryons
dc.typejournal article
dc.volume.number103
dcterms.references[1] L.Y. Glozman, Phys. Lett. B 475, 329 (2000). [2] R. F. Wagenbrunn and L.Y. Glozman, Phys. Lett. B 643, 98 (2006); T. D. Cohen and L.Y. Glozman, Mod. Phys. Lett. A 21, 1939 (2006); L.Y. Glozman, A.V. Nefediev, and J. E. Ribeiro, Phys. Rev. D 72, 094002 (2005). [3] E. S. Swanson, Phys. Lett. B 582, 167 (2004). [4] A. Le Yaouanc et al., Phys. Rev. D 31, 137 (1985). [5] P. Bicudo et al., Phys. Lett. B 442, 349 (1998). [6] C. E. DeTar and T. Kunihiro, Phys. Rev. D 39, 2805 (1989); D. Jido, T. Hatsuda, and T. Kunihiro, Phys. Rev. Lett. 84, 3252 (2000). [7] S. Sarkar et al., arXiv:0902.3150. [8] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008). [9] J. Segovia, D. R. Entem, and F. Fernandez, Phys. Lett. B 662, 33 (2008). [10] P. O. Bowman et al., Nucl. Phys. B, Proc. Suppl. 161, 27 (2006); M. B. Parappilly et al., Phys. Rev. D 73, 054504 (2006); S. Furui, Few-Body Syst. 45, 51 (2009); 46, 73 (2009). [11] R. Alkofer et al., Ann. Phys. (N.Y.) 324, 106 (2009). [12] For a discussion on HQCD, a good starting point is N. H. Christ and T. D. Lee, Phys. Rev. D 22, 939 (1980). [13] A.V. Nefediev, J. E. Ribeiro, and A. P. Szczepaniak, JETP Lett. 87, 271 (2008). [14] W. Lucha and F. F. Schoberl, Mod. Phys. Lett. A 5, 2473 (1990). [15] For a linear potential, with m(k)α K^(-4) , |M^+- M^-| α 1/j^3 . If, on the contrary, the quark mass is constant, and still the potential remains chirally invariant, then the decrease follows a slower j^_1. We can retrospectively understand analytically the q ‾q numerical results of [2], with chiral quartets and with the j scaling of the splittings. While their doublet |M^+- M^-|~1/j^3 , their interdoublet splitting follows a weaker 1/j^3/2 as expected in a corollary of Eq. (9) for spin-independent potentials. [16] P. Bicudo, G. Krein, and J. E. Ribeiro, Phys. Rev. C 64, 025202 (2001). [17] T. Hahn, Comput. Phys. Commun. 168, 78 (2005). [18] B. Julia-Diaz et al., Phys. Rev. C 77, 045205 (2008)
dspace.entity.typePublication
relation.isAuthorOfPublication6290fe55-04e6-4532-91e6-1df735bdbdca
relation.isAuthorOfPublication.latestForDiscovery6290fe55-04e6-4532-91e6-1df735bdbdca

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Llanes-Estrada_FJ17libre.pdf
Size:
230.19 KB
Format:
Adobe Portable Document Format

Collections