Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A law of conservation of number for local Euler characteristics

Loading...
Thumbnail Image

Full text at PDC

Publication date

2002

Advisors (or tutors)

Journal Title

Journal ISSN

Volume Title

Publisher

American Mathematical Society
Citations
Google Scholar

Citation

Abstract

Let T and V be complex analytic spaces, with T reduced and locally irreducible and π:T×V→T the projection map to the first factor. Let K ∗ be a complex 0→K n → X n K n−1 → X n−1 …→ X 2 K 1 → X 1 K 0 →0 of O T×V coherent sheaves, where all X j are O T×V -linear, all sheaves K j are O T -flat and such that the support of the homology sheaves H j (K ∗ ) is π -finite. For every t∈T , V t denotes {t}×V≅V ; K ∗ t denotes the complex obtained by tensoring K ∗ with O V t ; K ∗ t;p denotes the complex formed by the germs at (t,p) of K ∗ t and H j (K ∗ t;p ) denotes the j th homology group of the complex K ∗ t;p . The Euler characteristic of the complex of sheaves K ∗ t at a point (t,p)∈V t is defined as χ(K ∗ t;p )=∑ j=0 n (−1) j dim C H j (K ∗ t;p ). The authors show that, for every (t 0 ,p 0 )∈T×V there are neighbourhoods T ′ and V ′ of t 0 and p 0 , respectively, such that for every t∈T ′ , χ(K ∗ t 0 ;p 0 )=∑ q∈V ′ χ(K ∗ t;p ) .

Research Projects

Organizational Units

Journal Issue

Description

Papers from the II Iberoamerican Congress on Geometry held at CIMAT in Guanajuato, Mexico on January 4-9, 2001.

Keywords