Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Advanced concepts in waveguide spectrometers

dc.book.title2006 3rd IEEE International Conference on Group IV Photonics
dc.contributor.authorMartínez Matos, Óscar
dc.contributor.authorCheben, Pavel
dc.contributor.authorSchmid, Jens H.
dc.contributor.authorBogdanov, Alexei L.
dc.contributor.authorCalvo Padilla, María Luisa
dc.contributor.authorDelâge, André
dc.contributor.authorDensmore, Adam
dc.contributor.authorJanz, Siegfried
dc.contributor.authorLamontagne, Boris
dc.contributor.authorLapointe, Jean
dc.contributor.authorPost, Edith
dc.contributor.authorPowell, Ian
dc.contributor.authorRodrigo Martín-Romo, José Augusto
dc.contributor.authorWaldron, Phillip
dc.contributor.authorXu, Dan-Xia
dc.date.accessioned2023-06-20T13:40:46Z
dc.date.available2023-06-20T13:40:46Z
dc.date.issued2006
dc.description©2006 British Crown. International Conference on Group IV Photonics (3ª. 2006. Ottawa, Canadá). Part of this work has been supported by the NRC Genome and Health Initiative.
dc.description.abstractWe present several new concepts to extend the capabilities of arrayed waveguide grating spectrometers. Strong lateral mode confinement wavegaide structure in the focal plane is used to increase resolution, a Michelson-type AWG spectrometer can improve optical throughput or etendue, and we show that AWG dispersion can be magnified many times by modifying the waveguide group index.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipNRC Genome and Health Initiative
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25221
dc.identifier.doi10.1109/GROUP4.2006.1708228
dc.identifier.isbn978-1-4244-0095-9
dc.identifier.officialurlhttp://dx.doi.org/10.1109/GROUP4.2006.1708228
dc.identifier.relatedurlhttp://ieeexplore.ieee.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53351
dc.language.isoeng
dc.page.final248
dc.page.initial246
dc.publisherIEEE
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordMulti/Demultiplexer
dc.subject.keywordBirefringence
dc.subject.keywordCompensation
dc.subject.keywordDevices
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleAdvanced concepts in waveguide spectrometers
dc.typebook part
dcterms.references1. P. Cheben, "Wavelength dispersive planar waveguide devices: echelle gratings and arrayed waveguide gratings," in Optical Waveguides: from Theory to Applied Technologies, M. L. Calvo and V. Lakshminarayanan, Eds., Taylor and Francis, London, 2006, Chap. 5. 2. S. Janz, Silicon-based waveguide technology for wavelength division multiplexing, in Silicon Photonics, L. Pavesi and D. J. Lockwood, Eds., Berlin, Springer-Verlag, 2004, chapter 10. 3. S. Janz, P. Cheben, A. Delâge, B. Lamontagne, M.-J. Picard, D.-X. Xu, K.P. Yap, and W.N. Ye, "Microphotonics: Current challenges and applications," in Frontiers in planar lightwave circuit technology, design, simulation, and fabrication, S. Janz, J. Čtyroký, and S. Tanev, Eds., Nato Science Series II Mathematics, Physics and Chemistry, vol. 216, pp. 1-38, Springer, Berlin, 2006. 4. P.D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, "Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity," IEEE Photon. Technol. Lett., vol. 9, pp. 940-941, 1997. 5. M.R.T. Pearson, A. Bezinger, A. Delâge, J. W. Fraser, S. Janz, P.E. Jessop, and D.-X. Xu, "Arrayed waveguide grating demultiplexers in silicon-on-insulator," in Silicon-based Optoelectronics II, SPIE Proc. vol. 3953, pp. 11-18, 2000. 6. P. Cheben, D.-X. Xu, S. Janz, and A. Delâge, "Scaling down photonic waveguide devices on the SOI platform," in VLSI Circuits and Systems, J.F. Lopez, J.A. Montiel-Nelson, D. Pavlidis, Eds., SPIE Proc. vol. 5117, pp. 147-156, 2003. 7. P. Cheben, A. Delâge, L. Erickson, S. Janz, and D.-X. Xu, "Polarization compensation in silicon-on-insulator arrayed waveguide grating devices," in Silicon-based and hybrid optoelectronics III, SPIE Proc. vol. 4293, pp. 15-22, 2001. 8. P. Cheben, D.-X. Xu, S. Janz, A. Delâge, and D. Dalacu, "Birefringence compensation in silicon-on-insulator planar waveguide demultiplexers using a buried oxide layer," in Optoelectronic Integration on Silicon, D. J. Robbins and G. E. Jabbour, Eds., SPIE Proc. vol. 4997, pp. 181-189, 2003 9. D.-X. Xu, P. Cheben, D. Dalacu, A. Delâge, S. Janz, B. Lamontagne, M.-J. Picard, and W.N. Ye, "Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of cladding stress." Optics Letters, vol. 29, pp. 2384-2386, 2004 10. P. Cheben, A. Bogdanov, A. Delâge, S. Janz, B. Lamontagne, M. J. Picard, E. Post, and D-X. Xu, "A 100-channel near-infrared SOI waveguide microspectromer: Design and fabrication challenges," in Optoelectronics Devices and Integration, SPIE Proc. vol. 5644, pp. 103-110, 2005. 11. A. Delâge, S. Bidnyk, P. Cheben, K. Dossou, S. Janz, B. Lamontagne, M. Packirisamy, and D.-X. Xu, "Recent developments in integrated spectrometers, in Proc. of the 6th International Conference on Transparent Optical Networks (ICTON), Wroclaw, Poland, vol.2, pp. 78-83, July 2004. 12. M. Popović, K. Wada, S. Akiyama, H.A. Haus, J. Michel, "Air trenches for sharp silica waveguide bends," J. Lightwave Technol., vol. 20, pp. 1762-1772, 2002. 13. K. Takada, M. Abe, T. Shibata, and K. Okamoto, "Tandem multi/demultiplexer covering the S-, C-, and L-bands using arrayed waveguide grating with Gaussian passband as primary filter," IEEE Photon. Technol. Lett., vol. 14, pp. 648-650, 2002. 14. P. Cheben, I. Powell, S. Janz, and D.-X. Xu, "Wavelength-dispersive device based on a Fourier-transform Michelson-type arrayed waveguide grating," Optics Letters, vol. 30, pp. 1824-1826, 2005. 15. O. Martínez, M.L. Calvo, P. Cheben, S. Janz, J.A. Rodrigo, D.-X. Xu, and A. Delâge, "Arrayed waveguide grating based on group index modification," Journal of Lightwave Technology, vol. 24, pp. 1551-1557, 2006. 16. Y.A. Vlasov, M. O'Boyle, H.F. Hamann, and S.J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature, vol. 438, pp. 65-69, 2005. 17. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slab," Phys. Review Lett., vol. 87, 253902-1, 2001.
dspace.entity.typePublication
relation.isAuthorOfPublicationb6643c3d-f635-48d3-a642-922a4b2e595c
relation.isAuthorOfPublicatione2846481-608d-43dd-a835-d70f73a4dd48
relation.isAuthorOfPublication.latestForDiscoveryb6643c3d-f635-48d3-a642-922a4b2e595c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martinez-Matos21.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format