Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Electrical conductivity of a pion gas

dc.contributor.authorFernández Fraile, Daniel
dc.contributor.authorGómez Nicola, Ángel
dc.date.accessioned2023-06-20T10:53:07Z
dc.date.available2023-06-20T10:53:07Z
dc.date.issued2006-02
dc.description© 2006 The American Physical Society. We are grateful to R. F. lvarez-Estrada, A. Dobado, F. J. LLanes-Estrada, and J. M. Martínez Resco for their useful comments. We also acknowledge financial support from the Spanish research projects No. FPA2004-02602, No. BFM2002-01003, No. R27/05-13955-BSCH, No. FPA2005-02327, and from the Spanish F.P.I. programme (BES-2005-6726).
dc.description.abstractThe electrical conductivity of a pion gas at low temperatures is studied in the framework of linear response and chiral perturbation theory. The standard ChPT power counting has to be modified to include pion propagator lines with a nonzero thermal width in order to properly account for collision effects typical of kinetic theory. With this modification, we discuss the relevant chiral power counting to be used in the calculation of transport coefficients. The leading order contribution is found and we show that the dominant higher order ladder diagrams can be treated as perturbative corrections at low temperatures. We find that the DC conductivity sigma(T) is a decreasing function of T, behaving for very low T as sigma(T)similar to e(2)m(pi) root m pi/T, consistently with nonrelativistic kinetic theory. When unitarization effects are included, sigma(T) increases slowly as T approaches the chiral phase transition. We compare with related works and discuss some physical consequences, especially in the context of the low-energy hadronic photon spectrum in relativistic heavy ion collisions.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish research projects
dc.description.sponsorshipSpanish F.P.I. programme
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30418
dc.identifier.doi10.1103/PhysRevD.73.045025
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.73.045025
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51391
dc.issue.number4
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDFPA2004-02602
dc.relation.projectIDBFM2002-01003
dc.relation.projectIDR27/05-13955-BSCH
dc.relation.projectIDFPA2005-02327
dc.relation.projectIDBES-2005-6726
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordChiral perturbation-theory
dc.subject.keywordPhoton-emission rates
dc.subject.keywordHeavy-ion collisions
dc.subject.keywordHot hadronic matter
dc.subject.keywordQuark-gluon plasma
dc.subject.keywordFinite-temperature
dc.subject.keywordField-theory
dc.subject.keywordTransport-coefficients
dc.subject.keywordDispersion-relations
dc.subject.keywordReal-time
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleElectrical conductivity of a pion gas
dc.typejournal article
dc.volume.number73
dcterms.references[1] S. Weinberg, Physica A (Amsterdam) 96, 327 (1979). [2] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984). [3] J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83 (1987); P. Gerber and H. Leutwyler, Nucl. Phys. B321, 387 (1989). [4] J. L.Goity and H. Leutwyler, Phys. Lett. B 228, 517 (1989). [5] A. Schenk, Phys. Rev. D 47, 5138 (1993). [6] A. Gómez Nicola, F. J. Llanes-Estrada, and J. R. Peláez, Phys. Lett. B 550, 55 (2002). [7] A. Dobado, A. Gómez Nicola, F. Llanes-Estrada, and J. R. Peláez, Phys. Rev. C 66, 055201 (2002). [8] S. Jeon, Phys. Rev. D 52, 3591 (1995). [9] P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys. 11 (2000) 001. [10] M. A. Valle Basagoiti, Phys. Rev. D 66, 045005 (2002). [11] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, New York, 1981). [12] S. Gupta, Phys. Lett. B 597, 57 (2004). [13] M. Prakash, M. Prakash, R. Venugopalan, and G. M. Welke, Phys. Rev. Lett. 70, 1228 (1993). [14] D. Davesne, Phys. Rev. C 53, 3069 (1996). [15] A. Dobado and S. N. Santalla, Phys. Rev. D 65, 096011 (2002). [16] A. Dobado and F. J. Llanes-Estrada, Phys. Rev. D 69, 116004 (2004). [17] J. Alam et al., Ann. Phys. (N.Y.) 286, 159 (2000) and references therein. [18] P. Aurenche, F. Gelis, R. Kobes, and H. Zaraket, Phys. Rev. D 58, 085003 (1998). [19] P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys. 11 (2001) 057. [20] F. Gelis, H. Niemi, P. V. Ruuskanen, and S. S. Räsänen, J. Phys. G 30, S1031 (2004). [21] J. P. Blaizot and F. Gelis, Eur. Phys. J. C 43, 375 (2005). [22] J. V. Steele, H. Yamagishi, and I. Zahed, Phys. Lett. B 384, 255 (1996). [23] J. V. Steele, H. Yamagishi, and I. Zahed, Phys. Rev. D 56, 5605 (1997). [24] R. Rapp and J. Wambach, Eur. Phys. J. A 6, 415 (1999). [25] S. Turbide, R. Rapp, and C. Gale, Phys. Rev. C 69, 014903 (2004). [26] M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, England, 1996). [27] G. D. Mahan, Many-Particle Physics (Plenum, New York, 2000). [28] T. S. Evans, Nucl. Phys. B374, 340 (1992); R. Baier and A. Niégawa, Phys. Rev. D 49, 4107 (1994). [29] J. Schwinger, J. Math. Phys. (N.Y.) 2, 407 (1961); L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)]; Y. Takahashi and H. Umezawa, Collective Phenomena 2, 55 (1975); A. J. Niemi and G. W. Semenoff, Ann. Phys. (N.Y.) 152, 105 (1984); Nucl. Phys. B230, 181 (1984). [30] R. Kobes, Phys. Rev. D 42, 562 (1990); Phys. Rev. D 43, 1269 (1991). [31] E. Wang and U. Heinz, Phys. Lett. B 471, 208 (1999). [32] G. D. Moore, J. Phys. G 30, S775 (2004). [33] T. N. Truong, Phys. Rev. Lett. 61, 2526 (1988); Phys. Rev. Lett. 67, 2260 (1991); A. Dobado, M. J. Herrero, and T. N. Truong, Phys. Lett. B 235, 134 (1990); A. Dobado and J. R. Peláez, Phys. Rev. D 47, 4883 (1993); Phys. Rev. D 56, 3057 (1997). [34] A. Gómez Nicola and J. R. Peláez, Phys. Rev. D 65, 054009 (2002). [35] S. Eidelman et al., Phys. Lett. B 592, 1 (2004). [36] G. Aarts and J. M. Martinez Resco, J. High Energy Phys. 04 (2002) 053. [37] F. Karsch, E. Laermann, P. Petreczky, S. Stickan, and I. Wetzorke, Phys. Lett. B 530, 147 (2002). [38] M. M. Aggarwal et al. (WA98 Collaboration), Phys. Rev. Lett. 93, 022301 (2004). [39] T. Peitzmann and M. Thoma, Phys. Rep. 364, 175 (2002).
dspace.entity.typePublication
relation.isAuthorOfPublication574aa06c-6665-4e9a-b925-fa7675e8c592
relation.isAuthorOfPublication.latestForDiscovery574aa06c-6665-4e9a-b925-fa7675e8c592

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gnicola22libre.pdf
Size:
354.19 KB
Format:
Adobe Portable Document Format

Collections