Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The non-relativistic coulomb problem on a cone

dc.contributor.authorRuiz Ruiz, Fernando
dc.contributor.authorGibbons, Gary W.
dc.contributor.authorVachaspati, Tanmay
dc.date.accessioned2023-06-20T18:59:21Z
dc.date.available2023-06-20T18:59:21Z
dc.date.issued1990
dc.description© Springer, Part of Springer Science+Business Media
dc.description.abstractWe study the non-relativistic Coulomb problem on a cone. The non-trivial topology of the cone breaks the symmetry associated with the conservation of the Lagrange-Laplace Runge-Lenz vector. Classically this translates into a precession of the orbits, and quantum-mechanically into a splitting of the energy levels. For the scattering problem we find that classical multi-scattering is possible and that it gives rise to a wake structure; we also evaluate the full quantum wave function and from it recover the classical results.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25593
dc.identifier.doi10.1007/BF02096759
dc.identifier.issn0010-3616
dc.identifier.officialurlhttp://dx.doi.org/10.1007/BF02096759
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59056
dc.issue.number2
dc.journal.titleCommunications in Mathematical Physics
dc.page.final312
dc.page.initial295
dc.publisherSpringer Verlag
dc.rights.accessRightsmetadata only access
dc.subject.cdu53
dc.subject.keywordPhysics
dc.subject.keywordMathematical
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleThe non-relativistic coulomb problem on a cone
dc.typejournal article
dc.volume.number127
dcterms.references1.'t Hooft, G.: Commun. Math. Phys.117, 685 (1988) » CrossRef 2.Deser, S., Jackiw, R.: Commun. Math. Phys.118, 495 (1988) » CrossRef 3.Dowker, J.S.: J. Math. Phys.30, 770 (1989); Phys. Rev.D36, 3095 (1987) » CrossRef 4.Linet, B.: Phys. Rev.D33, 1833 (1986) » CrossRef 5.Brandenberger, R., Davis, A.C., Matheson, A.M.: Nucl. Phys.B307, 909 (1988) » CrossRef 6.Smith, A.G.: Gravitational effects of an infinite straight cosmic string on classical and quantum fields: self forces and vacuum fluctuations. TUFTS preprint TUTP-86-11 (1986) 7.Ruback, P.J.: Nucl. Phys.B296, 669 (1988) » CrossRef 8.Ruback, P.J., Shellard, E.P.: Phys. Lett.209B, 262 (1988) 9.Carlip, S.: Nucl. Phys.B324, 106 (1989) » CrossRef 10.Lagrange, J.L.: Nouveau memoire de l'Academie Royale des Sciences et Belles Lettres de Berlin (1781), in Oeuvres de Lagrange, vol. 5, p. 132 11.Deser, S., Jackiw, R., 't Hooft, G.: Ann. Phys.152, 220 (1984) » CrossRef 12.Henneaux, M.: Phys. Rev.D29, 2766 (1984) » CrossRef 13.Hankins, T.L.: Sir William Rowan Hamilton. Baltimore, MD: Johns Hopkins University Press 1983 14.Kay, B.S., Studer, U.M.: Quantum mechanics and field theory on cones and cosmic strings. University of Zurich and ETH preprint (1989) 15.Silk, J., Vilenkin, A.: Phys. Rev. Lett.53, 1700 (1984) » CrossRef 16.de Sousa Gerbert, Ph. Jackiw, R.: Commun. Math. Phys.124, 229–260 (1989) » CrossRef 17.Sommerfeld, A.: Proc. Lond. Math. Soc.28, 417 (1897)
dspace.entity.typePublication
relation.isAuthorOfPublication00879a8b-f834-4645-adb9-01e259407707
relation.isAuthorOfPublication.latestForDiscovery00879a8b-f834-4645-adb9-01e259407707

Download

Collections