Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Proximity-based Unification: an Efficient Implementation Method

dc.contributor.authorJulián-Iranzo, Pascual
dc.contributor.authorSáenz Pérez, Fernando
dc.date.accessioned2025-01-13T14:55:16Z
dc.date.available2025-01-13T14:55:16Z
dc.date.issued2021-05
dc.description.abstractUnification is a central concept in logic systems based on the resolution principle. As well, in knowledge representation, proximity relations (i.e., reflexive, symmetric, fuzzy binary relations) are useful for introducing semantics into a syntactic level by modelling the semantic closeness of different syntactic objects and managing vague or imprecise information. Proximity relations, in combination with the unification algorithm, make possible expressing certain forms of approximate reasoning in a logic programming framework. We use proximity relations in the context of a (fuzzy) logic programming system, called Bousi_Prolog, as a way of solving the limitations introduced by similarity relations (i.e., transitive proximity relations) to correctly represent fuzzy information. Recently, we introduced an accurate definition of proximity between expressions (terms or atomic formulas) and a new unification algorithm able to manage proximity relations properly. However, the so-called weak unification algorithm, which is an extension of Martelli and Montanari’s unification algorithm supported by the new notion of proximity, does not have an efficient implementation. In this paper, we present a method that facilitates such an efficient implementation, including an adaptation of the weak SLD resolution rule based on the new unification algorithm, and its integration and implementation into the fuzzy logic programming system Bousi_Prolog. A performance analysis to show its efficiency is also presented.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationP. Julián-Iranzo and F. Sáenz-Pérez, "Proximity-Based Unification: An Efficient Implementation Method," in IEEE Transactions on Fuzzy Systems, vol. 29, no. 5, pp. 1238-1251, May 2021, doi: 10.1109/TFUZZ.2020.2973129.
dc.identifier.doi10.1109/TFUZZ.2020.2973129
dc.identifier.essn1941-0034
dc.identifier.issn1063-6706
dc.identifier.officialurlhttps://dx.doi.org/10.1109/TFUZZ.2020.2973129
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114021
dc.issue.number5
dc.journal.titleIEEE Transactions on Fuzzy Systems
dc.language.isoeng
dc.page.final1251
dc.page.initial1238
dc.publisherIEEE
dc.relation.projectIDTIN2016-76843-C4-2-R
dc.relation.projectIDTIN2017- 86217-R
dc.relation.projectIDS2018/TCS-4339
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordFuzzy Logic Programming
dc.subject.keywordFuzzy Prolog
dc.subject.keywordBousi-Prolog
dc.subject.keywordWeak Unification
dc.subject.keywordWeak SLD Resolution
dc.subject.keywordProximity Relations
dc.subject.ucmLenguajes de programación
dc.subject.unesco1203.23 Lenguajes de Programación
dc.titleProximity-based Unification: an Efficient Implementation Method
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number29
dspace.entity.typePublication
relation.isAuthorOfPublication7d90b5c1-c8b0-4345-9fb2-11622136f010
relation.isAuthorOfPublication.latestForDiscovery7d90b5c1-c8b0-4345-9fb2-11622136f010

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Proximity_based_unification.pdf
Size:
1.41 MB
Format:
Adobe Portable Document Format

Collections