Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Multi-server retrial model with variable number of active servers

dc.contributor.authorArtalejo Rodríguez, Jesús Manuel
dc.contributor.authorOrlovsky, D. S.
dc.contributor.authorDudin, Alexander N.
dc.date.accessioned2023-06-20T09:36:23Z
dc.date.available2023-06-20T09:36:23Z
dc.date.issued2005-03
dc.descriptionThe authors would like to thank the referees for their constructive comments on an earlier version of the paper. J. R. Artalejo thanks the support received from the research project BFM2002-02189.
dc.description.abstractThis paper deals with a multi-server retrial queueing model in which the number of active servers depends on the number of customers in the system. To this end, the servers are switched on and off according to a multithreshold strategy. For a fixed choice of the threshold levels, the stationary distribution and various performance measures of the system are calculated. In the case of equidistant connection levels, the optimum threshold level is numerically computed.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15665
dc.identifier.doi10.1016/j.cie.2005.01.013
dc.identifier.issn0360-8352
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0360835205000148
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50017
dc.issue.number2
dc.journal.titleComputers and Industrial Engineering
dc.language.isoeng
dc.page.final288
dc.page.initial273
dc.publisherPergamon Press, Inc.
dc.relation.projectIDBFM2002-02189
dc.rights.accessRightsrestricted access
dc.subject.cdu519.8
dc.subject.keywordMulti-server retrial queue
dc.subject.keywordThreshold control
dc.subject.keywordVariable number of active servers
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleMulti-server retrial model with variable number of active servers
dc.typejournal article
dc.volume.number48
dcterms.referencesArtalejo, J. R. (1999a). A classified bibliography of research on retrial queues: Progress in 1990–1999. Top, 7, 187–211. Artalejo, J. R. (1999b). Accessible bibliography on retrial queues. Mathematical and Computer Modelling, 30, 223–233. Artalejo, J. R., Gomez-Corral, A., & Neuts, M. F. (2000). Numerical analysis of multiserver retrial queues operating under a full access policy. In G. Latouche, & P. Taylor (Eds.), Advances in matrix algorithmic methods for stochastic models (pp. 1–19). New Jersey: Notable Publications. Artalejo, J. R., & Pozo, M. (2002). Numerical calculation of the stationary distribution of the main multiserver retrial queue. Annals of Operations Research, 111, 41–56. Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (1993). Nonlinear programming: Theory and algorithms. New York: Wiley. Breuer, L., Dudin, A. N., & Klimenok, V. I. (2002). A retrial BMAP/PH/N system. Queueing Systems, 40, 433–457. Bright, L., & Taylor, P. G. (1995). Calculating the equilibrium distribution of level dependent quasi-birth-and-death processes. Communications in Statistics—Stochastic Models, 11, 497–525. Bright, L., & Taylor, P. G. (1996). Equilibrium distributions for level-dependent quasi-birth-and-death processes. In S. R. Chakravarthy, & A. S. Alfa (Eds.), Matrix analytic methods in stochastic models (pp. 359–375). New Jersey: Marcel Dekker. Chakravarthy, S. R., & Dudin, A. N. (2002). Multiserver retrial queue whith BMAP arriving and group services. Queueing Systems, 42, 5–31. Dudin,A.N.,& Klimenok, V.I.(2000).A retrial BMAP/SM/1 system with linear repeated requests.Queueing Systems,34,47–66. Falin, G. I., & Templeton, J. G. C. (1997). Retrial queues. London: Chapman & Hall. Gomez-Corral, A., Ramalhoto M. F. The stationary distribution of a markovian process arising in the theory of multiserver retrial queueing systems. Mathematical and Computer Modelling, 30 (1999), pp. 141–158 Kemeni, J., Shell, J., & Knapp, A. (1996). Denumerable Markov chains. New York: Van Nostrand. Klimenok, V. I. (1997). Sufficient condition for existence of 3-dimensional quasi-Toeplitz Markov chain stationary distribution. In Queues: flows, systems, networks, Proceedings of the 1997 Belorusian conference on queueing theory (pp. 142–145). Minsk: BSU. Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling. Philadelphia: ASQ/SIAM.
dspace.entity.typePublication
relation.isAuthorOfPublicationdb4b8a04-44b0-48e9-8b2c-c80ffae94799
relation.isAuthorOfPublication.latestForDiscoverydb4b8a04-44b0-48e9-8b2c-c80ffae94799

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arta36.pdf
Size:
264.97 KB
Format:
Adobe Portable Document Format

Collections