Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An elementary example of Sard's Theorem sharpness

dc.contributor.authorFerrera Cuesta, Juan
dc.date.accessioned2023-06-22T10:48:42Z
dc.date.available2023-06-22T10:48:42Z
dc.date.issued2022-02-17
dc.description.abstractIn this note we define a C1 function F : [0, M] 2 → [0, 2] that satisfies that its set of critical values has positive measure. This function provides an example, easier than those that usually appear in the literature, of how the order of differentiability required in Sard’s Theorem cannot be improved.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73268
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71710
dc.language.isoeng
dc.rights.accessRightsopen access
dc.subject.cdu517
dc.subject.keywordMorse-Sard Theorem
dc.subject.keywordCantor set
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmAnálisis matemático
dc.subject.unesco12 Matemáticas
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleAn elementary example of Sard's Theorem sharpness
dc.typejournal article
dcterms.references[1] J.S. Athreya, B. Reznick, J.T. Tyson. Cantor Set Arithmetic, The American Mathematical Monthly, 126 (1) (2019) 4–17. [2] S.M. Bates. Towards a precise smoothness hypothesis in Sard’s theorem Proc. Amer. Math. Soc. 117 (1) (1993) 279–283. [3] A.P. Morse. The behavior of a function on its critical set Ann. of Math. 40 (1939) 62–70. [4] A. Norton Functions not constant on fractal quasi-arcs of critical points Proc. Amer. Math. Soc. 106 (2) (1989) 397–405. [5] A. Sard. The measure of the critical values of differentiable maps Bull. Amer Math. Soc. 48 (1942) 883–890. [6] J. Shallit. Quickies Q785, Mag. Math. 64 (5) (1991) 351–357. [7] H. Whitney. A function not constant on a connected set of critical points Duke Math. J. 1 (1935) 514–517.
dspace.entity.typePublication
relation.isAuthorOfPublication1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3
relation.isAuthorOfPublication.latestForDiscovery1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ferrera_anelementary.pdf
Size:
82.6 KB
Format:
Adobe Portable Document Format

Collections