La Universidad permanecerá cerrada del 11 al 15 de agosto.
 

Ant colony optimization for multi-UAV minimum time search in uncertain domains

dc.contributor.authorPerez-Carabaza, Sara
dc.contributor.authorBesada Portas, Eva
dc.contributor.authorLópez Orozco, José Antonio
dc.contributor.authorCruz García, Jesús Manuel De La
dc.date.accessioned2024-01-22T09:27:57Z
dc.date.available2024-01-22T09:27:57Z
dc.date.issued2017
dc.descriptionEl texto completo de este trabajo no se encuentra disponible por no haber sido facilitado aún por su autor, por restricciones de copyright, o por no existir una versión digital.
dc.description.abstractThis paper presents a new approach based on ant colony optimization (ACO) to determine the trajectories of a fleet of unmanned air vehicles (UAVs) looking for a lost target in the minimum possible time. ACO is especially suitable for the complexity and probabilistic nature of the minimum time search (MTS) problem, where a balance between the computational requirements and the quality of solutions is needed. The presented approach includes a new MTS heuristic that exploits the probability and spatial properties of the problem, allowing our ant based algorithm to quickly obtain high-quality high-level straight segmented UAV trajectories. The potential of the algorithm is tested for different ACO parameterizations, over several search scenarios with different characteristics such as number of UAVs, or target dynamicsand location distributions. The statistical comparison against other techniques previously used for MTS( ad hoc heuristics, cross entropy optimization, bayesian optimization algorithm and genetic algorithms) shows that the new approach outperforms the others. (C) 2017 Elsevier B.V. All rights reserved.eng
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipAIRBUS
dc.description.statusunpub
dc.identifier.citationSara Perez-Carabaza, Eva Besada-Portas, Jose A. Lopez-Orozco, Jesus M. de la Cruz, Ant colony optimization for multi-UAV minimum time search in uncertain domains, Applied Soft Computing, Volume 62, 2018, Pages 789-806, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2017.09.009.
dc.identifier.doi10.1016/j.asoc.2017.09.009
dc.identifier.issn1568-4946
dc.identifier.officialurlhttps://doi.org/10.1016/j.asoc.2017.09.009
dc.identifier.urihttps://hdl.handle.net/20.500.14352/94255
dc.journal.titleApplied Soft Computing
dc.language.isoeng
dc.page.final806
dc.page.initial789
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/AER-30459
dc.rights.accessRightsopen access
dc.subject.cdu007.52
dc.subject.keywordAnt colony optimization
dc.subject.keywordProbabilistic path planning
dc.subject.keywordUAVs
dc.subject.keywordMinimum time search
dc.subject.ucmRobótica
dc.subject.unesco3311.01 Tecnología de la Automatización
dc.titleAnt colony optimization for multi-UAV minimum time search in uncertain domains
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number62
dspace.entity.typePublication
relation.isAuthorOfPublication0acc96fe-6132-45c5-ad71-299c9dcb6682
relation.isAuthorOfPublication26b95994-f79c-4d7c-8de5-a003d6d2a770
relation.isAuthorOfPublication08a518fd-1b1d-4145-aab2-74962af70cbe
relation.isAuthorOfPublication.latestForDiscovery0acc96fe-6132-45c5-ad71-299c9dcb6682

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COMulti-UAV.pdf
Size:
9.44 MB
Format:
Adobe Portable Document Format
Description:
Versión final del autor o postprint

Collections