Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Diagenetic albitization in the Tera Group, Cameros Basin (NE Spain) recorded by trace elements and spectral cathodoluminescence

dc.contributor.authorGonzález Acebrón, Laura
dc.contributor.authorGötze, Jens
dc.contributor.authorBarca, Donatella
dc.contributor.authorArribas Mocoroa, José
dc.contributor.authorMas Mayoral, José Ramón
dc.contributor.authorPérez Garrido, Carlos
dc.date.accessioned2023-06-20T00:52:41Z
dc.date.available2023-06-20T00:52:41Z
dc.date.issued2012-06-18
dc.description.abstractThis paper deals with the diagenetic albitization of both plagioclases and K-feldspars in the Tithonian fluvial sandstones of a rift basin (Cameros Basin). The sandstones in the lower part of the rift record have not suffered this albitization process. A clear relationship is observed between sodium contents, as the main element of some feldspars and their cathodoluminescence (CL) color (the higher the sodium content, the lower is their CL intensity). In conclusion, albitization processes are detectable by decreased CL intensities and changes in the CL spectra. In addition, very different trace element compositions are obtained by laser ablation when comparing trace elements of non-albitized feldspars in sandstones of the lower part of the rift record with those of albitized feldspars in sandstones of the infill top. Non-albitized K-feldspars show Rb, Sr, Ba and Pb contents of up to 1000 ppm. In contrast, very flat profiles of trace element contents (< 250 ppm) are recorded in albitized feldspars (both K-feldspars and plagioclases). Thus, albitization implies feldspars impoverished in trace elements, including REE, which suggests that albitization is a dissolution and reprecipitation process. Further, albitized plagioclases show higher REE contents than albitized K-feldspars. We report here that REE patterns partly depend on the initial composition of the feldspar (K-feldspar or plagioclase) as a useful geochemical criterion for distinguishing albitized detrital plagioclases from albitized detrital K-feldspars. CL spectra from non-albitized and albitized K-feldspars and plagioclases revealed marked differences. Non-albitized K-feldspars present blue (main emission band at 460 nm) and brownish CL colors (590 nm), sometimes in the same grain. Brownish colors are related to weathering processes. The primary blue emission is related to Al–O−–Al centers, enhanced probably by Al incorporation due to the coupled substitution of Ba2+ + Al3+ ↔ M+ + Si4+. Weathered K-feldspars present 4.8 times lower Ba content than fresh blue luminescent ones. The brownish colors are related to the external border or fractured grain zones, altered by weathering processes. Therefore, the observed 590 nm emission is assumed to be caused by structural defects resulting from weathering and alteration. Albitized K-feldspars are usually weak luminescent with a typical CL emission band at 620 nm. Sometimes, relicts of the original blue luminescence (460 nm band) are still present. The leaching of probably both Al and Ba can be responsible for the decrease in the blue band. The characteristic 620 nm band is also dominant in albitized weak luminescent plagioclases. Two additional emission bands at 440 nm (Al–O−–Al center) and 565 nm (Mn2+) occur, when albitized plagioclases preserved their original CL characteristics (green CL color). Another spectral peak at ca. 720 nm can be explained by Fe3+ activation due to Fe3+–Al3+ substitution. The spectral CL measurements indicate that changes in luminescence due to albitization (620 nm emission) seem to be more related to structural defects than to trace element activation or quenching.
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/65045
dc.identifier.doi10.1016/j.chemgeo.2012.04.012
dc.identifier.issn0009-2541
dc.identifier.officialurlhttps://doi.org/10.1016/j.chemgeo.2012.04.012
dc.identifier.relatedurlhttps://cir.cenieh.es/handle/20.500.12136/487
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43081
dc.journal.titleChemical geology
dc.language.isoeng
dc.page.final162
dc.page.initial148
dc.publisherElsevier Science B.V., Amsterdam.
dc.rights.accessRightsrestricted access
dc.subject.cdu551.7
dc.subject.cdu552.14
dc.subject.keywordAlbitization
dc.subject.keywordFeldspar
dc.subject.keywordPlagioclase
dc.subject.keywordCathodoluminescence
dc.subject.keywordLaser ablation ICP-MS
dc.subject.keywordTrace elements.
dc.subject.ucmGeología estratigráfica
dc.subject.ucmMineralogía (Geología)
dc.subject.ucmPetrología
dc.subject.unesco2506.19 Estratigrafía
dc.subject.unesco2506.11 Mineralogía
dc.titleDiagenetic albitization in the Tera Group, Cameros Basin (NE Spain) recorded by trace elements and spectral cathodoluminescence
dc.typejournal article
dc.volume.number312-13
dspace.entity.typePublication
relation.isAuthorOfPublication2fb1dff4-b4f0-4016-be4d-86ea407ff58c
relation.isAuthorOfPublication6da5c68f-0c70-4bf8-a9f9-d0988e828f39
relation.isAuthorOfPublicationc6a33f32-53b8-4e29-93e8-94d356b58a19
relation.isAuthorOfPublicationf5782ca0-6d61-4b8e-bea3-7b7c1df9f949
relation.isAuthorOfPublication.latestForDiscovery2fb1dff4-b4f0-4016-be4d-86ea407ff58c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Diagenetic albitization in the Tera Group.pdf
Size:
3.94 MB
Format:
Adobe Portable Document Format

Collections