Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Effects of transition metal doping on the growth and properties of Rutile TiO_2 nanoparticles

dc.contributor.authorVasquez, Cristian
dc.contributor.authorPeche-Herrero, Andrea
dc.contributor.authorMaestre Varea, David
dc.contributor.authorCremades Rodríguez, Ana Isabel
dc.contributor.authorRamirez-Castellanos, Julio
dc.contributor.authorGonzalez-Calbe, José María
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.date.accessioned2023-06-19T13:22:28Z
dc.date.available2023-06-19T13:22:28Z
dc.date.issued2013
dc.description© 2013 American Chemical Society. This work was supported by MICINN (MAT-2009-07882, CSD 2009-00013, MAT2011-23068). The authors are grateful to National Center for Electron Microscopy (CNME) at Universidad Complutense de Madrid. The authors are grateful to the ESCA microscopy beamline staff for useful advice on XPS measurements at the Elettra Sincrotron in Trieste.
dc.description.abstractRutile TiO_2 nanoparticles doped with V, Cr, or Mn ions have been synthesized via a modified Pechini method using polymeric precursors. The final particle sizes range between 20 and 500 nm depending on the selected dopant. The TiO_2 rutile phase has been stabilized in the doped nanoparticles at 650 degrees C. Microstructural analysis shows a good crystallinity and cationic homogeneity of the doped nanoparticles. The cathodoluminescence study of the doped and undoped nanoparticles shows a luminescence signal related to the structural defects of the samples and the presence of dopants. In particular, an intense 1.52 eV emission associated with Ti^3+ interstitials dominates the luminescence of undoped nanoparticles, which also exhibit less intense emissions extending from 2 to 3.4 eV. The presence of V, Cr, or Mn in the rutile TiO_2 nanoparticles induces variations in the associated cathodoluminescence signal which would be useful in order to achieve a deeper understanding of the doping process and spread future optical applications. X-ray photoelectron spectroscopy (XPS) confirmed the presence of Ti^3+ in the near-surface region of the nanoparticles, the concentration of which decreases when doping. The presence of Ti^3+ interstitials related states in the band gap is discussed.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23656
dc.identifier.doi10.1021/jp3101656
dc.identifier.issn1932-7447
dc.identifier.officialurlhttp://pubs.acs.org/doi/abs/10.1021/jp3101656
dc.identifier.relatedurlhttp://pubs.acs.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33399
dc.issue.number4
dc.journal.titleJournal of Physical Chemistry C
dc.language.isoeng
dc.page.final1947
dc.page.initial1941
dc.publisherAmer Chemical Soc
dc.relation.projectIDMAT-2009-07882
dc.relation.projectIDCSD 2009-00013
dc.relation.projectIDMAT2011-23068
dc.rights.accessRightsrestricted access
dc.subject.cdu538.9
dc.subject.keywordNanowire Arrays
dc.subject.keywordElectron
dc.subject.keywordPhotoluminescence
dc.subject.keywordPhotocatalysis
dc.subject.keywordNanocrystals
dc.subject.keywordLuminescence
dc.subject.keywordSurfaces
dc.subject.keywordStates
dc.subject.keywordOxide
dc.subject.keywordFilm
dc.subject.ucmFísica de materiales
dc.titleEffects of transition metal doping on the growth and properties of Rutile TiO_2 nanoparticles
dc.typejournal article
dc.volume.number117
dcterms.references(1) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69−69. (2) Gratzel, M. Photoelectrochemical Cells. ̈ Nature 2001, 414, 338−344. (3) Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735−758. (4) Millis, A.; Le Hunte, S. J. Photochem. Photobiol. A 1997, 108, 1−35. (5) Kronawitter, C. X.; Bakke, J. R.; Wheeler, D. A.; Wang, W. C.; Chang, C.; Antoun, B. R.; Zhang, J. Z.; Guo, J.; Bent, S. F.; Mao, S. S.; Vayssieres, L. Nano Lett. 2011, 11, 3855−3861. (6) Zhu, Y.; Zhang, L.; Yao, W.; Cao, L. Appl. Surf. Sci. 2000, 158, 32−37. (7) Reidy, D. J.; Holmes, J. D.; Morris, M. A. J. Eur. Ceram. Soc. 2006, 26, 1527−1534. (8) Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L. J. Am. Chem. Soc. 1999, 121, 1613−1614. (9) Maestre, D.; Cremades, A.; Piqueras, J. Nanotechnology 2006, 17, 1584−1588. (10) Wu, J. J.; Yu, C. C. J. Phys. Chem. B 2004, 108, 3377−3379. (11) Lei, Y.; Zhang, L. D.; Fan, J. C. Chem. Phys. Lett. 2001, 338, 231−236. (12) Pechini, M. P. US Patent No. 3330697, 1967. (13) Fernandez, I.; Cremades, A.; Piqueras, J. ́ Semicond. Sci. Technol. 2005, 20, 239−243. (14) Sanjines, R.; Tang, H.; Berger, H.; Gozzo, F.; Margaritondo, G.; ́ Levy, F. J. Appl. Phys. 1994, 75, 2945−1−2945−7. (15) Kumar, P. M.; Badrinarayanan, S.; Sastry, M. Thin Solid Films 2000, 358 122.130. (16) Colombo, D. P.; Roussel, K. A.; Saeh, J.; Skinner, D. E.; Cavaleri, J. J.; Bowman, R. M. Chem. Phys. Lett. 1995, 232, 207−214. (17) Lei, Y.; Zhang, D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen, W.; Wang, S. X. Appl. Phys. Lett. 2001, 78, 1125−1127. (18) Wu, J. M.; Shih, H. C.; Wu, W. T.; Tseng, Y. K.; Chen, I. C. J. Cryst. Growth 2005, 281, 384−390. (19) Suisalu, A.; Aarik, J.; Mandar, H.; Sildos, I. ̈ Thin Solid Films 1998, 336, 295−298. (20) Liu, S. W.; Song, C. F.; Lü, M. K.; Gu, F.; Wang, S. F.; Xu, D.; Yuan, D. R.; Wang, C. Mater. Sci. Eng., B 2003, 104, 49−53. (21) Satoh, N.; Nakashima, T.; Kamikura, K.; Yamamoto, K. Nat. Nanotechnol. 2008, 3, 106−111. (22) Peng, H.; Li, J.; Li, S. S.; Xia, J. B. J. Phys. Chem. C 2008, 112, 13964−13969. (23) Enright, B.; Fitzmaurice, D. J. Phys. Chem. 1996, 100, 1027−1035. (24) Monticone, S.; Tufeu, R.; Kanaev, A. V.; Scolan, E.; Sanchez, C. ́ Appl. Surf. Sci. 2000, 162−163, 565−570. (25) Osorio-Guillen, J.; Lany, S.; Zunger, A. ́ Phys. Rev. Lett. 2008, 100, 036601−1−036601−4. (26) Klosek, S.; Raftery, D. J. Phys. Chem. B 2001, 105, 2815−2819. (27) Nogales, E.; García, J. A.; Mendez, B.; Piqueras, J. ́ J. Appl. Phys. 2007, 101, 033517−1−033517−4. (28) Song, C. F.; Lü, M. K.; Yang, P.; Gu, F.; Xu, D.; Yuan, D. R. J. Sol-Gel Sci. Technol. 2003, 28, 196−197. (29) Diebold, U. Surf. Sci. Rep. 2003, 48, 53−229. (30) Luciu, I.; Bartali, R.; Laidani, N. J. Phys. D: Appl. Phys. 2012, 45, 345302−1−345302−9. (31) Thomas, A. G.; Flavell, W. R.; Mallick, A. K.; Kumarasinghe, A. R.; Tsoutsou, D.; Khan, N.; Chatwin, C.; Rayner, S.; Smith, G. C.; Stockbauer, R. L.; Warren, S.; Johal, T. K.; Patel, S.; Holland, D.; Taleb, A.; Wiame, F. Phys. Rev. B 2007, 75, 035105−1−035105−12. (32) Wendt, S.; Sprunger, P. T.; Lira, E.; Madsen, G. K. H.; Li, Z.; Hansen, J. O.; Matthiesen, J.; Blekige-Rasmussen, A.; Laegsgaard, E.; Hammer, B.; Besenbacher, F. Science 2008, 320, 1755−1759. (33) Maestre, D.; Martinez de Velasco, I.; Cremades, A.; Amati, M.; Piqueras, J. J. Phys. Chem. C 2010, 114, 11748−11752.
dspace.entity.typePublication
relation.isAuthorOfPublication43cbf291-2f80-4902-8837-ea2a9ffaa702
relation.isAuthorOfPublicationda0d631e-edbf-434e-8bfd-d31fb2921840
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscovery43cbf291-2f80-4902-8837-ea2a9ffaa702

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CremadesAna59.pdf
Size:
1023.16 KB
Format:
Adobe Portable Document Format

Collections