Long-term memory in lipid assemblies: Rate-independent hysteresis in the ripple-to-liquid-disordered transition of sphingomyelin bilayers

dc.contributor.authorLlombart, Pablo
dc.contributor.authorDe la Arada, Igor
dc.contributor.authorGonzález Ramírez, Emilio J.
dc.contributor.authorAlonso, Alicia
dc.contributor.authorGonzález Mac-Dowell, Luis
dc.contributor.authorGoñi, Félix M.
dc.date.accessioned2025-04-02T09:28:54Z
dc.date.available2025-04-02T09:28:54Z
dc.date.issued2025-04-01
dc.descriptionThis work was funded in part by the Spanish Ministry of Science, Innovation, and Universities (MCIU), Agencia Estatal de Investigación (AEI), Fondo Europeo de Desarrollo Regional (FEDER) (Grant Nos. PID2021-124461NB-I00 and PID2023-151751NB-100), the Basque Government (Grant No. IT1625-22), Fundación Biofísica Bizkaia, and the Basque Excellence Research Center (BERC) program of the Basque Government.
dc.description.abstractSphingomyelin (SM) is the most abundant sphingolipid in mammalian cells. It contains a phosphorylcholine headgroup, which makes SM an analog of the (glycerol-containing) phosphatidylcholines. Palmitoyl (C16:0) SM bilayers in excess water exhibit a thermotropic transition from the ripple to the fluid phase centered at ≈41 °C. In phosphatidylcholines, as in most phospholipids, the ripple-to-fluid transition is fully reversible and virtually free of hysteresis. In this paper, however, the corresponding transition was assessed in aqueous SM by infrared (IR) spectroscopy, a technique detecting molecular vibrations. Vibrational spectra as a function of temperature revealed thermotropic phase transitions. When the samples were successively heated up and cooled down, a clear hysteresis was detected. The cooling transition started at the same temperature as the heating one, but the end-point, in terms of IR band position, was clearly different. Hysteresis was particularly visible in the shift of the IR Amide I band, associated with the lipid polar headgroup, and it was rate-independent, within a wide range of heating/cooling rates (from 5.5 °C/min to less than 0.05 °C/min). Atomistic computer simulations of the molecular dynamics provided information consistent with the IR data. In addition, it showed that the in-plane arrangement of SM bilayers displays a significant amount of hexatic order, and that the hexatic order parameter, reflecting primarily polar headgroup ordering, exhibited the same kind of hysteresis described by IR. Rate-independent hysteresis allows the development of durable memories; therefore, the observations in this paper could lead to novel applications of lipid assemblies.
dc.description.departmentDepto. de Química Física
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipFondo Europeo de Desarrollo Regional (EU)
dc.description.sponsorshipGobierno Vasco
dc.description.sponsorshipFundación Biofísica Bizkaia
dc.description.sponsorshipBasque Excellence Research Center
dc.description.statuspub
dc.identifier.citationLlombart, P.; Arada, I. D. L.; González-Ramírez, E. J.; Alonso, A.; MacDowell, L. G.; Goñi, F. M. Long-Term Memory in Lipid Assemblies: Rate-Independent Hysteresis in the Ripple-to-Liquid-Disordered Transition of Sphingomyelin Bilayers. The Journal of Chemical Physics 2025, 162 (13), 135101. https://doi.org/10.1063/5.0252051.
dc.identifier.essn1089-7690
dc.identifier.issn0021-9606
dc.identifier.officialurlhttps://doi.org/10.1063/5.0252051
dc.identifier.relatedurlhttps://pubs.aip.org/aip/jcp/article/162/13/135101/3341534/Long-term-memory-in-lipid-assemblies-Rate
dc.identifier.urihttps://hdl.handle.net/20.500.14352/119157
dc.issue.number13
dc.journal.titleThe Journal of Chemical Physics
dc.language.isoeng
dc.page.final135101-11
dc.page.initial135101-1
dc.publisherAmerican Institute of Physics
dc.relation.projectIDPID2021-124461NB-I00
dc.relation.projectIDPID2023-151751NB-100
dc.relation.projectIDIT1625-22
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu544
dc.subject.keywordLipid membrane
dc.subject.keywordPhospholipids
dc.subject.keywordInfrared spectroscopy
dc.subject.keywordMolecular simulation
dc.subject.keywordHysteresis
dc.subject.ucmCiencias
dc.subject.unesco2210 Química Física
dc.titleLong-term memory in lipid assemblies: Rate-independent hysteresis in the ripple-to-liquid-disordered transition of sphingomyelin bilayers
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number162
dspace.entity.typePublication
relation.isAuthorOfPublication263687e7-adf6-43f0-a7b6-2a21fe8b1b93
relation.isAuthorOfPublication.latestForDiscovery263687e7-adf6-43f0-a7b6-2a21fe8b1b93

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Long-term_memory_V.Accepted.pdf
Size:
648.73 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Long-term_memory_V.Published.pdf
Size:
4.71 MB
Format:
Adobe Portable Document Format

Collections