Zero coupon bonds assesment using a stochastic model for the discount factor
dc.contributor.author | Usábel Rodrigo, Miguel Arturo | |
dc.date.accessioned | 2023-06-21T01:36:18Z | |
dc.date.available | 2023-06-21T01:36:18Z | |
dc.date.issued | 1998 | |
dc.description.abstract | In many empirical situations (e.g.:Libor), the rate of interest will remain fixed at a certain level (random instantaneous rate oi) for a random periodof time(ti) until a new random rate should be considered, oi+1, that will remain for ti+1, waiting time untill the next change in the rate of interest. Three models were developed using the approach cited aboye for random rate of interest and random waiting times between changes in the rate of interest. Using easy integral transforms (Laplace and Fourier) we will be able to calculate the moments of the probability function of the cliscount factor, V(t), and even its c.d.f.. The approach will also be extended to the calculation of the expected value and variance of a zero coupon bond with maturity t and we will also approximate the c.d.f. | |
dc.description.department | Decanato | |
dc.description.faculty | Fac. de Ciencias Económicas y Empresariales | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/27085 | |
dc.identifier.issn | 2255-5471 | |
dc.identifier.relatedurl | https://economicasyempresariales.ucm.es/working-papers-ccee | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64134 | |
dc.issue.number | 03 | |
dc.language.iso | eng | |
dc.page.total | 19 | |
dc.publication.place | Madrid | |
dc.publisher | Facultad de Ciencias Económicas y Empresariales. Decanato | |
dc.relation.ispartofseries | Documentos de Trabajo de la Facultad de Ciencias Económicas y Empresariales | |
dc.rights | Atribución-NoComercial-CompartirIgual 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/3.0/es/ | |
dc.subject.keyword | Stochastic discount factor | |
dc.subject.keyword | Laplace and Fourier transforms | |
dc.subject.keyword | Renewal integral equations | |
dc.subject.keyword | Zero coupon bond. | |
dc.subject.ucm | Procesos estocásticos | |
dc.subject.unesco | 1208.08 Procesos Estocásticos | |
dc.title | Zero coupon bonds assesment using a stochastic model for the discount factor | |
dc.type | technical report | |
dc.volume.number | 1998 | |
dcterms.references | Abramowitz, M. and Stegun, I.A. (1972). Handbook of Mathematical Functions. New York, N.Y. Dover Publications. Ang, A. and Sherris, M. (1997). Interest Rate Management: Developments in interest rate temr structure modelling for risk management and valuation of interest-rate-dependent cash flows. North American Actuarial Journal. Volume 1, number 2. April, 1997. pgs 1-26. Bowers,.N.L., Gerber, H.U., Hickman, J.C. Jones, D.A. and Nesbitt, C.J. (1986) Actuarial Mathematics. Ithasca,Ill.: Society of Actuaries. Bühlmann, H. (1995). Life insurance with stochastic interest rates. Financial Risk in Insurance. Ed. G. Ottaviani. Springer-Verlag Heidelberg. Davies, B. and Martin, B.(1979). Numerical inversion of the Laplace transform: a survey anrl comparison of methods. Journal of computational physics 33, pgs. 1-32. Gradshteyn, I. and Ryzhik, I. (1994). Table of integrals, series and products. Academic Press, Inc. San Diego, Ca. Hürlirnann, W. (1993). Methodes Stochastiques d'evaluation du rendiment. Proc. 3rd AFIR international Colloquium. Roma. Parker, G. (1997). Stochastic Analysis of the interaction between investment and insurance risks. North American Actuarial Journal. Volume 1, number 2. April, 1997. pgs 1-26. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1