Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Resonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle

dc.contributor.authorCarreño Sánchez, Fernando
dc.contributor.authorAntón Revilla, Miguel Ángel
dc.contributor.authorArrieta Yáñez, Francisco
dc.date.accessioned2023-06-19T14:54:37Z
dc.date.available2023-06-19T14:54:37Z
dc.date.issued2013-11-08
dc.descriptionEste documento es un preprint de la versión publicada
dc.description.abstractThe resonance fluorescence spectrum (RFS) of a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle (MNP) is analyzed. The quantum dot is described as a four-level atomlike system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle, which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions, which is accompanied by very minor local field corrections. This manifests into dramatic modifications in the RFS of the hybrid system in contrast to the one obtained for the isolated QD. The RFS is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field applied in the Voigt geometry, and the Rabi frequency of the driving field. It is shown that the spin of the QD is imprinted onto certain sidebands of the RFS, and that the signal at these sidebands can be optimized by engineering the shape of the MNP.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia e Innovacion (MCINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30882
dc.identifier.doi10.1103/PhysRevB.88.195303
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.88.195303
dc.identifier.relatedurlhttp://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.195303
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34723
dc.issue.number19
dc.journal.titlePhysical Review B - Condensed Matter and Materials Physics
dc.language.isoeng
dc.page.initialnº de artículo: 195303
dc.publisherAmerican Physical Society
dc.relation.projectIDProject No. FIS(2010-22082)
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.cdu533.951
dc.subject.keywordExciton-Plasmon Interaction
dc.subject.keywordSingle-Hole Spin
dc.subject.keywordSpontaneous Emission
dc.subject.keywordSemiconductor
dc.subject.keywordGraphene
dc.subject.ucmFísica de materiales
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleResonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle
dc.typejournal article
dc.volume.number88
dcterms.references1 P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, Nature (London) 406, 968 (2000). 2 D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998). 3 J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature (London) 430, 431 (2004). 4 D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, Phys. Rev. B 76, 241306 (2007). 5 A. Zrenner E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, Nature (London) 418, 612 (2002). 6 X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, Science 301, 809 (2003). 7 X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, Science 317, 929 (2007). 8 A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, Phys. Rev. Lett. 99, 187402 (2007). 9 E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, Nature Phys. 5, 203 (2009). 10 A. Muller, W. Fang, J. Lawall, and G. S. Solomon, Phys. Rev. Lett. 101, 027401 (2008). 11 X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, Phys. Rev. Lett. 101, 227401 (2008). 12 X. Xu, B. Sun, P. R. Berman, D. G. Steel, D. Gammon, and L. J. Sham, Solid Stat. Commun. 149, 1479 (2009). 13 A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999). 14 H. J. Kimble and L. Mandel, Phys. Rev. A 13, 2123 (1976). 15 A. N. Vamivakas, Y. Zhao1, Chao-Yang Lu, and M. Atatüre, Nature Phys. 5, 198 (2009). 16 C. Matthiesen, A. N. Vamivakas, and M. Atatüre, Phys. Rev. Lett. 108, 093602 (2012). 17 K. Konthasinghe, J. Walker, M. Peiris, C. K. Shih, Y. Yu, M. F. Li, J. F. He, L. J. Wang, H. Q. Ni, Z. C. Niu, and A. Muller, Phys. Rev. B 85, 235315 (2012). 18 E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Rev. 69, 37 (1946). 19 W. Zhang, A. O. Govorov, and G. W. Bryant, Phys. Rev. Lett. 97, 146804 (2006). 20 R. D. Artuso and G. W. Bryant, Nano Lett. 8, 2106 (2008). 21 K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002). 22 A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, Nano Lett. 6, 984 (2006). 23 A. Manjavacas, F. J. García de Abajo, and P. Nordlander, Nano Lett. 11, 2318 (2011). 24 A. Manjavacas, P. Nordlander, and F. J. García de Abajo, ACS Nano 2, 1724 (2012). 25 F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, Nano Lett. 11, 3370 (2011). 26 V. V. Klimov, M. Ducloy, and V. S. Letokhov, Eur. Phys. J. D 20, 133 (2002). 27 A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, Phys. Rev. Lett. 105, 263601 (2010). 28 D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, Nano Lett. 11, 1049 (2011). 29 Y. Gu, L. Huang, O. J. F. Martin, and Q. Gong, Phys. Rev. B 81, 193103 (2010). 30 Y. V. Vladimirova, V. V. Klimov, V. M. Pastukhov, and V. N. Zadkov, Phys. Rev. A 85, 053408 (2012). 31 D. V. Bulaev and D. Loss. Phys. Rev. Lett. 95, 076805 (2005). 32 D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, Science 325, 70 (2009). 33 D. Brunner, Ph.D. thesis, Heriot-Watt University, 2010, http://hdl.handle.net/10399/2350. 34 M. A. Antón, F. Carreño, Sonia Melle, Oscar G. Calderón, E. Cabrera-Granado, and Mahi R. Singh, Phys. Rev. B 87, 195303 (2013). 35 B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Ohberg, S. Seidl, M. Kröner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, Nature (London) 451, 441 (2008). 36 X. Xu, Y. Wu, B. Sun, Q. Huang, J. Cheng, D. G. Steel, A. S. Bracker, D. Gammon, C. Emary, and L. J. Sham, Phys. Rev. Lett. 99, 097401 (2007). 37 M. Kroner, K. M. Weiss, B. Biedermann, S. Seidl, A. W. Holleitner, A. Badolato, P. M. Petroff, P. Öhberg, R. J. Warburton, and K. Karrai, Phys. Rev. B 78, 075429 (2008). 38 E. D. Kim, K. Truex, X. Xu, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, Phys. Rev. Lett. 104, 167401 (2010). 39 D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature (London) 456, 218 (2008). 40 H. T. Dung, L. Knoll, and D. G. Welsch, Phys. Rev. A 66, 063810 (2002). 41 S. M. Sadeghi, Nanotech. 20, 225401 (2009). 42 J. Gersten and A. Nitzan, J. Chem. Phys. 75, 1139 (1981). 43 L. Novotny, Appl. Phys. Lett. 69, 3806 (1996). 44 F. J. García de Abajo and J. Aizpurúa, Phys. Rev. B 56, 15873 (1997). 45 L. A. Blanco and F. J. García de Abajo,J. Quant. Spectr. Rad. Trans. 89, 37 (2004). 46 R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, Opt. Comm. 261, 368 (2006). 47 A. O. Govorov, J. Lee, and N. A. Kotov, Phys. Rev. B 76, 125308 (2007). 48 M. A. Anton, F. Carreño, S. Melle, O. G. Calderón, E. Cabrera-Granado, J. Cox, and M. R. Singh, Phys. Rev. B 86, 155305 (2012). 49 M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, London, 1997). 50 M. Lax, Phys. Rev. 172, 350 (1968). 51 P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). 52 D. Kleppner, Phys. Rev. Lett. 47, 233 (1981). 53 P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96, 113002 (2006). 54 M. T. Cheng, S. D. Liu, H. J. Zhou, Z. H. Hao, and Q. Q. Wang, Opt. Lett. 32, 2125 (2007). 55 G. Lu, T. Zhang, W. Li, L. Hou, J. Liu, and Q. Gong, J. Phys. Chem. C 115, 15822 (2011). 56 A. Urbanczyk, G. J. Hamhuis, and R. Nötzel, Appl. Phys. Lett. 96, 113101 (2010). 57 M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, Nano Lett. 10, 4555 (2010). 58 M. Pfeiffer, K. Lindfors, P. Atkinson3, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, Phys. Status Solidi 249, 678 (2012). 59 A. O. Govorov, Phys. Rev. B 82, 155322 (2010). 60 C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 5. 61 A. V. Malyshev and V. A. Malyshev, Phys. Rev. B 84, 035314 (2011).
dspace.entity.typePublication
relation.isAuthorOfPublication70ad6ca8-0e1b-49d4-a046-8d693ca88c5a
relation.isAuthorOfPublicationa59c3727-c018-4ce7-84d5-24f3a2f3de79
relation.isAuthorOfPublication.latestForDiscovery70ad6ca8-0e1b-49d4-a046-8d693ca88c5a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Resonance fluorescence 2013.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format

Collections