Decoherence due to an excited-state quantum phase transition in a two-level boson model
dc.contributor.author | Relaño Pérez, Armando | |
dc.contributor.author | Pérez Fernández, P. | |
dc.contributor.author | Arias, J. M. | |
dc.contributor.author | Dukelsky, J. | |
dc.contributor.author | García Ramos, J. E. | |
dc.date.accessioned | 2023-06-20T03:46:37Z | |
dc.date.available | 2023-06-20T03:46:37Z | |
dc.date.issued | 2009-09 | |
dc.description | ©2009 The American Physical Society. This work has been partially supported by the Spanish Ministerio de Educacion y Ciencia and by the European regional development fund (FEDER) under Projects No. FIS2008-04189, No. FIS2006-12783-C03-01, No. FPA2006-13807-C02-02, and No. FPA2007-63074, by CPAN-Ingenio, by Comunidad de Madrid under Project No. 200650M012, CSIC, and by Junta de Analucia a under Projects No. FQM160, No. FQM318, No. P05-FQM437, and No. P07-FQM-02962. A. R. is supported by the Spanish program "Juan de la Cierva" and P. P- F. is supported by a FPU grant of the Spanish Ministerio de Educacion y Ciencia. | |
dc.description.abstract | The decoherence induced on a single qubit by its interaction with the environment is studied. The environment is modeled as a scalar two-level boson system that can go through either first-order or continuous-excited-state quantum phase transitions, depending on the values of the control parameters. A mean-field method based on the Tamm-Damkoff approximation is worked out in order to understand the observed behavior of the decoherence. Only the continuous-excited-state phase transition produces a noticeable effect in the decoherence of the qubit. This is maximal when the system-environment coupling brings the environment to the critical point for the continuous phase transition. In this situation, the decoherence factor (or the fidelity) goes to zero with a finite-size scaling power law. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Educación y Ciencia | |
dc.description.sponsorship | European regional development fund (FEDER) | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Junta de Andalucia | |
dc.description.sponsorship | Spanish program "Juan de la Cierva" | |
dc.description.sponsorship | CPAN-Ingenio | |
dc.description.sponsorship | CSIC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/27582 | |
dc.identifier.doi | 10.1103/PhysRevA.80.032111 | |
dc.identifier.issn | 1050-2947 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevA.80.032111 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44423 | |
dc.issue.number | 3 | |
dc.journal.title | Physical Review A | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.projectID | FIS2008-04189 | |
dc.relation.projectID | FIS2006-12783-C03-01 | |
dc.relation.projectID | FPA2006-13807-C02-02 | |
dc.relation.projectID | FPA2007-63074 | |
dc.relation.projectID | 200650M012 | |
dc.relation.projectID | FQM160 | |
dc.relation.projectID | FQM318 | |
dc.relation.projectID | P05-FQM437 | |
dc.relation.projectID | P07-FQM-02962 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 536 | |
dc.subject.keyword | Lipkin Model | |
dc.subject.keyword | Systems | |
dc.subject.ucm | Termodinámica | |
dc.subject.unesco | 2213 Termodinámica | |
dc.title | Decoherence due to an excited-state quantum phase transition in a two-level boson model | |
dc.type | journal article | |
dc.volume.number | 80 | |
dcterms.references | [1] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003). [2] M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005). [3] F. M. Cucchietti, S. Fernández Vidal, and J. P. Paz, Phys. Rev. A 75, 032337 (2007). [4] C. Cormick and J. P. Paz, Phys. Rev. A 77, 022317 (2008). [5] D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, and R. Fazio, Phys. Rev. A 75, 032333 (2007). [6] L. C. Wang, H. T. Cui, and X.-X. Yi, Phys. Lett. A 372, 1387 (2008). [7] S. Camalet and R. Chitra, Phys. Rev. Lett. 99, 267202 (2007). [8] Z.-G. Yuan, P. Zhang, and S.-S. Li, Phys. Rev. A 75, 012102 (2007). [9] A. Relaño, J. M. Arias, J. Dukelsky, J. E. García Ramos, P. Pérez Fernández, Phys. Rev. A 78, 060102 (R) (2008). [10] P. Cejnar, S. Heinze, and M. Macek, Phys. Rev. Lett. 99, 100601 (2007). [11] P. Cejnar and J. Jolie, Prog. Part. Nucl. Phys. 62, 210 (2009). [12] W. D. Heiss, F. G. Scholtz, and H. B. Geyer, J. Phys. A 38, 1843 (2005); F. Leyvraz and W. D. Heiss, Phys. Rev. Lett. 95, 050402 (2005); W. D. Heiss, J. Phys. A 39, 10081 (2006). [13] S. Heinze, P. Cejnar, J. Jolie, and M. Macek, Phys. Rev. C 73, 014306 (2006); M. Macek, P. Cejnar, J. Jolie, and S. Heinze, ibid. 73, 014307 (2006); P. Cejnar, M. Macek, S. Heinze, J. Jolie, and J. Dobes, J. Phys. A 39, L515 (2006). [14] M. A. Caprio, P. Cejnar, and F. Iachello, Ann. Phys. 323, 1106 (2008). [15] P. Cejnar and P. Stránský, Phys. Rev. E 78, 031130 (2008). [16] J. Vidal, J. M. Arias, J. Dukelsky, and J. E. García Ramos, Phys. Rev. C 73, 054305 (2006); J. M. Arias, J. Dukelsky, J. E. García Ramos, and J. Vidal, ibid. 75, 014301 (2007). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 53fed635-944b-485a-b13a-ea8f9355b7aa | |
relation.isAuthorOfPublication.latestForDiscovery | 53fed635-944b-485a-b13a-ea8f9355b7aa |
Download
Original bundle
1 - 1 of 1