Transition metal docking in MOF-303 for enhanced Atmospheric Water Harvesting: a multiscale simulation approach

dc.contributor.authorArjmandi, Mehrzad
dc.contributor.authorKhayet Souhaimi, Mohamed
dc.contributor.authorCalero, Sofia
dc.date.accessioned2026-01-12T19:23:04Z
dc.date.available2026-01-12T19:23:04Z
dc.date.issued2026-02
dc.description© 2025 The Authors. PHOTOWAT Grant Agreement ID: 101154984,
dc.description.abstractWe present a multiscale computational study on water adsorption and transport in pristine and metal-functionalized MOF-303 frameworks for Atmospheric Water Harvesting (AWH). Using Grand Canonical Monte Carlo (GCMC), Kinetic Monte Carlo (KMC), and Molecular Dynamics (MD) simulations, we evaluated the thermodynamic uptake, adsorption kinetics, and mobility of water under varying humidity. Post-synthetic metalation with Cu(I) and Ag(I) increased the hydrophilicity of the framework, with Cu@MOF-303 and Ag@MOF-303 achieving a 37 % and 27 % higher uptake and faster saturation kinetics, respectively. Density Functional Theory (DFT) calculations revealed enhanced binding energies and localized polarization effects at Cu sites, supported by electrostatic potential maps and charge redistribution analyses. Radial distribution function (RDF) analyses revealed that metalation, especially with Cu, enhances water structuring near specific adsorption sites through localized polarization and extended electronic redistribution. Reduced water diffusion in Cu@MOF-303, observed via mean square displacement (MSD) profiles, confirmed stronger confinement. Additionally, temperature-dependent desorption analyses indicated that Ag@MOF-303 offers a more favorable balance between high uptake and moderate regeneration temperatures, reinforcing its practical viability under solar-driven AWH conditions. These results underscore the potential of targeted metal docking to fine-tune MOF performance for water harvesting in low-humidity and off-grid environments.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationArjmandi, M., Khayet, M., & Calero, S. (2025). Transition metal docking in MOF-303 for enhanced Atmospheric Water Harvesting: A multiscale simulation approach. Microporous and Mesoporous Materials, 113943.
dc.identifier.doi10.1016/j.micromeso.2025.113943
dc.identifier.essn1873-3093
dc.identifier.issn1387-1811
dc.identifier.officialurlhttps://dx.doi.org/10.1016/j.micromeso.2025.113943
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S1387181125004585
dc.identifier.urihttps://hdl.handle.net/20.500.14352/129961
dc.journal.titleMicroporous and Mesoporous Materials
dc.language.isoeng
dc.page.final113943-16
dc.page.initial113943-1
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu620.1
dc.subject.keywordMOF-303
dc.subject.keywordMetal docking
dc.subject.keywordAtmospheric water harvesting
dc.subject.keywordWater adsorption
dc.subject.keywordDensity functional theory
dc.subject.keywordMultiscale simulation
dc.subject.ucmFísica de materiales
dc.subject.unesco2211.02 Materiales Compuestos
dc.titleTransition metal docking in MOF-303 for enhanced Atmospheric Water Harvesting: a multiscale simulation approach
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number401
dspace.entity.typePublication
relation.isAuthorOfPublication8e32e718-0959-4e6c-9e04-891d3d43d640
relation.isAuthorOfPublication.latestForDiscovery8e32e718-0959-4e6c-9e04-891d3d43d640

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1387181125004585-main.pdf
Size:
17.32 MB
Format:
Adobe Portable Document Format

Collections