Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Degrees of freedom of a time series

dc.contributor.authorMera Rivas, María Eugenia
dc.contributor.authorMorán Cabré, Manuel
dc.date.accessioned2023-06-20T20:33:10Z
dc.date.available2023-06-20T20:33:10Z
dc.date.issued2002
dc.description.abstractWe give a formal proof that if f is a smooth dynamics on a d-dimensional smooth manifold and μ is an ergodic and exact dimensional measure with Hausdorff dimension dimμ>d-1, then the number d of degrees of freedom of the dynamics can be recovered from the observation of an orbit. We implement, with this purpose, an algorithm based on the analysis of the microstructure of μ. We show how a correct estimation of d permits the computation of the Liapunov spectrum with a high accuracy avoiding the issue of the spurious exponents.
dc.description.departmentDepto. de Análisis Económico y Economía Cuantitativa
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/58885
dc.identifier.issn0022-4715
dc.identifier.officialurlhttps://doi.org/10.1023/A:1013172129075
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60450
dc.issue.number1-2
dc.journal.titleJournal of Statistical Physics
dc.language.isoeng
dc.page.final145
dc.page.initial125
dc.publisherSpringer Nature
dc.rights.accessRightsopen access
dc.subject.keywordDegrees of freedom
dc.subject.keywordDimension
dc.subject.keywordEmbedology
dc.subject.keywordSingular value decomposition
dc.subject.keywordLiapunov exponents.
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.titleDegrees of freedom of a time series
dc.typejournal article
dc.volume.number106
dspace.entity.typePublication
relation.isAuthorOfPublication71245121-5334-43ae-92e3-eb84a42790e8
relation.isAuthorOfPublication36e295dc-70b7-4ede-868c-a83357a04413
relation.isAuthorOfPublication.latestForDiscovery36e295dc-70b7-4ede-868c-a83357a04413

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mera-moran(jstatphy).pdf
Size:
289.52 KB
Format:
Adobe Portable Document Format

Collections