Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Detecting Cryptojacking Web Threats: An Approach with Autoencoders and Deep Dense Neural Networks

dc.contributor.authorHernández Suárez, Aldo
dc.contributor.authorSánchez Pérez, Gabriel
dc.contributor.authorToscano Medina, Linda K.
dc.contributor.authorOlivares Mercado, Jesus
dc.contributor.authorPortillo Portilo, Jose
dc.contributor.authorAvalos, Juan Gerardo
dc.contributor.authorGarcía Villalba, Luis Javier
dc.date.accessioned2023-06-22T11:05:00Z
dc.date.available2023-06-22T11:05:00Z
dc.date.issued2022-03-22
dc.description.abstractWith the growing popularity of cryptocurrencies, which are an important part of day-to-day transactions over the Internet, the interest in being part of the so-called cryptomining service has attracted the attention of investors who wish to quickly earn profits by computing powerful transactional records towards the blockchain network. Since most users cannot afford the cost of specialized or standardized hardware for mining purposes, new techniques have been developed to make the latter easier, minimizing the computational cost required. Developers of large cryptocurrency houses have made available executable binaries and mainly browser-side scripts in order to authoritatively tap into users’ collective resources and effectively complete the calculation of puzzles to complete a proof of work. However, malicious actors have taken advantage of this capability to insert malicious scripts and illegally mine data without the user’s knowledge. This cyber-attack, also known as cryptojacking, is stealthy and difficult to analyze, whereby, solutions based on anti-malware extensions, blocklists, JavaScript disabling, among others, are not sufficient for accurate detection, creating a gap in multi-layer security mechanisms. Although in the state-of-the-art there are alternative solutions, mainly using machine learning techniques, one of the important issues to be solved is still the correct characterization of network and host samples, in the face of the increasing escalation of new tampering or obfuscation techniques. This paper develops a method that performs a fingerprinting technique to detect possible malicious sites, which are then characterized by an autoencoding algorithm that preserves the best information of the infection traces, thus, maximizing the classification power by means of a deep dense neural network.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74847
dc.identifier.doi10.3390/app12073234
dc.identifier.issn2076-3417
dc.identifier.officialurlhttps://doi.org/10.3390/app12073234
dc.identifier.relatedurlhttps://www.mdpi.com/2076-3417/12/7/3234/htm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72085
dc.issue.number7
dc.journal.titleApplied Sciences
dc.language.isoeng
dc.page.initial3234
dc.publisherMPDI
dc.relation.projectIDHEROES (101021801)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordcryptomining
dc.subject.keywordmachine learning
dc.subject.keywordantoencoders
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmProgramación de ordenadores (Informática)
dc.subject.ucmSeguridad informática
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1203.23 Lenguajes de Programación
dc.titleDetecting Cryptojacking Web Threats: An Approach with Autoencoders and Deep Dense Neural Networks
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAuthorOfPublication.latestForDiscovery0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-12-03234-v3.pdf
Size:
2.58 MB
Format:
Adobe Portable Document Format

Collections