Approximate controllability of the Stokes system on cylinders by external unidirectional forces
dc.contributor.author | Díaz Díaz, Jesús Ildefonso | |
dc.contributor.author | Fursikov, A.V. | |
dc.date.accessioned | 2023-06-20T16:54:45Z | |
dc.date.available | 2023-06-20T16:54:45Z | |
dc.date.issued | 1997-04 | |
dc.description.abstract | Wt,give some negative and positive results on the approximate controllability of the Stokes system formulated on a cylinder Omega = G x R of R-3 when the control is a density of external unidirectional forces. We distinguish the case where the direction of the controls e is parallel to the cylinder generatrix (e = e(3)) from the one where e is orthogonal to this generatrix (e = e(1)). A negative result in the case of e = e(3) is proved for periodic boundary conditions on x(3), and homogeneous Dirichlet conditions on partial derivative G x R where G is a general set of R-2. In contrast to that, the approximate controllability is proved for homogeneous Dirichlet conditions on partial derivative Omega (i.e. zero on partial derivative G x R and solutions in (L-2(G x R))(3) for any t), when G is a rectangle and e = e(1) is orthogonal to the cylinder generatrix. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT (Spain) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15822 | |
dc.identifier.doi | 10.1016/S0021-7824(97)89956-4 | |
dc.identifier.issn | 0021-7824 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0021782497899564 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57405 | |
dc.issue.number | 4 | |
dc.journal.title | Journal de Mathématiques Pures et Appliquées | |
dc.language.iso | spa | |
dc.page.final | 375 | |
dc.page.initial | 353 | |
dc.publisher | Elsevier | |
dc.relation.projectID | PB 93/0443 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.977 | |
dc.subject.keyword | cylindrical domain | |
dc.subject.keyword | approximate controllability | |
dc.subject.keyword | Stokes system | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | Approximate controllability of the Stokes system on cylinders by external unidirectional forces | |
dc.type | journal article | |
dc.volume.number | 76 | |
dcterms.references | A.V. Fursikov, O.Yu. Imanuvilov. On the ϵ-controllability of the Stokes problem with distributed control concentrated in a subdomain. Russian Math. Surveys, 47 (1992), pp. 255–256 A.V. Fursikov, O.Yu. Imanuvilov. On approximate controllability of the Stokes system. Annales de la Faculté des Sciences de Toulouse, Vol II (1993), pp. 205–232 nº 2 E. Hille. Analytic Function Theory. Chelsea Pub. Com., Vol II (1973) O.A. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach (1969) J.-L. Lions.Are there connections between turbulence and controllability?. Analyse et Optimization des Systèmes, Springer-Verlag Lecture Notes in Control and Informatic Sciences, 144 (1990) J.-L. Lions. Remarques sur la contrôlabilité approchée. Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos, Universidad de Málaga, Spain (1990), pp. 77–87 J.-L. Lions. Contrôlabilité approchée pour le système de Stokes. Lecture at the Curso de Verano de la Universidad Complutense de Madrid on Economics, Environment and Their Mathematical Models, Almeria (July 1992) J.-L. Lions, E. Magenes. Problèmes aux limites non homogènes et applications. Dunod (1968) J.-L. Lions, E. Zuazua. A generic uniqueness result for the Stokes system and its control theoretical consequences.Volume dedicated to C. Pucci Marcel-Dekker (1996) S. Mizohata. Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques. Mem.Coll.Sci.Univ. Kyoto (3) (1958), pp. 219–239 Ser. A31 J.C. Saut, B. Scheurer. Unique continuation for some evolution equations. Journal of Differential Equations, 66 (1987), pp. 118–139 R. Temam. Navier-Stokes Equations : Théory and Numerical Analysis. North-Holland (1979) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 | |
relation.isAuthorOfPublication.latestForDiscovery | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 |
Download
Original bundle
1 - 1 of 1