Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spatial distribution of vacancy defects in GaP wafers

dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorDe Diego, N.
dc.contributor.authorLLopis, J.
dc.date.accessioned2023-06-20T19:08:44Z
dc.date.available2023-06-20T19:08:44Z
dc.date.issued1988-04-15
dc.description© American Institute of Physics. The authors thank Wacker-Chemitronic (DR. K. Löhnert) for providing the samples. The help of P. Fernández is acknowledged
dc.description.abstractCathodoluminescencescanning electron microscopy and positron annihilation techniques have been used to investigate the distribution of defects in GaP wafers. The results show the existence of a gradient of the concentration of vacancy‐type defects along the wafer diameter, which causes inhomogeneity in the emission. Dislocation density and vacancy concentration profiles have been compared.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27126
dc.identifier.doi10.1063/1.340994
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.340994
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59309
dc.issue.number8
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.page.final2585
dc.page.initial2583
dc.publisherAmerican Institute of Physics
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordPhysics
dc.subject.keywordApplied
dc.subject.ucmFísica de materiales
dc.titleSpatial distribution of vacancy defects in GaP wafers
dc.typejournal article
dc.volume.number63
dcterms.references1. M. Tajima, Y. Okada, and Y. Tokumaru, Jpn. J. Appl. Phys. Suppl. 17-1, 93 (1978). 2. C. Werkhoven, J. H. Hengst, and C. van Opdorp, Appl. Phys. Lett. 35, 136 (1979). 3. W. Frank and U. Gösele, Physica. 116B, 420 (1983). 4. F. kuhn-Kuhnenfeld, Inst. Phys, Conf. Ser. 33A, 159 (1977). 5. Llopis and J. Piqueras, J. Appl. Phys. 54, 4570 (1983). 6. G. A. Rozgonyi, A. R. von Neida, T. Lizuya, and S. E. Hasko, J. Appl. Phys. 43, 3141 (1972). 7. H. Berek and P. Kirsten , Phys. status Solidi A 68, K203 (1981) 8. J. Nishizawa, C.C. Jin, K. Suto, and M. Koike, J. Appl. Phys. 53, 5876 (1982). 9. M. Umeno, H. Kawabe, and T. Kokonoi, Philos. Mag. A44, 91 (1981). 10. M. Tajima , Jpn. J. Appl. Phys. 21, L227 (1982). 11. T. Katsumata, H. Okada, T. Kimura, and T. Fukuda, J. Appl. Phys. 60, 3105 (1986). 12. B. T. A. Mc Kec, S. Saimoto, A. T. Stewart, and M. J. Stott, Can. J. Phys. 52, 759 (1974). 13. G. Dlubek , O. Brümmer, and A. Polity, Appl. Phys. Lett. 49,385 (1986(). 14. G. Dlubek , O. Brümmer, f. Plazaola, and P. Hautojärvi, J. Phys. C. 19, 331 (1986). 15. C. A. Dimitriadis, E. Huang, and S. M. Davison, Solid-State electron. 21, 1419 (1978).
dspace.entity.typePublication
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoverydbc02e39-958d-4885-acfb-131220e221ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ292libre.pdf
Size:
575 KB
Format:
Adobe Portable Document Format

Collections