Spatial distribution of vacancy defects in GaP wafers
dc.contributor.author | Domínguez-Adame Acosta, Francisco | |
dc.contributor.author | Piqueras De Noriega, Francisco Javier | |
dc.contributor.author | De Diego, N. | |
dc.contributor.author | LLopis, J. | |
dc.date.accessioned | 2023-06-20T19:08:44Z | |
dc.date.available | 2023-06-20T19:08:44Z | |
dc.date.issued | 1988-04-15 | |
dc.description | © American Institute of Physics. The authors thank Wacker-Chemitronic (DR. K. Löhnert) for providing the samples. The help of P. Fernández is acknowledged | |
dc.description.abstract | Cathodoluminescencescanning electron microscopy and positron annihilation techniques have been used to investigate the distribution of defects in GaP wafers. The results show the existence of a gradient of the concentration of vacancy‐type defects along the wafer diameter, which causes inhomogeneity in the emission. Dislocation density and vacancy concentration profiles have been compared. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/27126 | |
dc.identifier.doi | 10.1063/1.340994 | |
dc.identifier.issn | 0021-8979 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.340994 | |
dc.identifier.relatedurl | http://scitation.aip.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59309 | |
dc.issue.number | 8 | |
dc.journal.title | Journal of Applied Physics | |
dc.language.iso | eng | |
dc.page.final | 2585 | |
dc.page.initial | 2583 | |
dc.publisher | American Institute of Physics | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Physics | |
dc.subject.keyword | Applied | |
dc.subject.ucm | Física de materiales | |
dc.title | Spatial distribution of vacancy defects in GaP wafers | |
dc.type | journal article | |
dc.volume.number | 63 | |
dcterms.references | 1. M. Tajima, Y. Okada, and Y. Tokumaru, Jpn. J. Appl. Phys. Suppl. 17-1, 93 (1978). 2. C. Werkhoven, J. H. Hengst, and C. van Opdorp, Appl. Phys. Lett. 35, 136 (1979). 3. W. Frank and U. Gösele, Physica. 116B, 420 (1983). 4. F. kuhn-Kuhnenfeld, Inst. Phys, Conf. Ser. 33A, 159 (1977). 5. Llopis and J. Piqueras, J. Appl. Phys. 54, 4570 (1983). 6. G. A. Rozgonyi, A. R. von Neida, T. Lizuya, and S. E. Hasko, J. Appl. Phys. 43, 3141 (1972). 7. H. Berek and P. Kirsten , Phys. status Solidi A 68, K203 (1981) 8. J. Nishizawa, C.C. Jin, K. Suto, and M. Koike, J. Appl. Phys. 53, 5876 (1982). 9. M. Umeno, H. Kawabe, and T. Kokonoi, Philos. Mag. A44, 91 (1981). 10. M. Tajima , Jpn. J. Appl. Phys. 21, L227 (1982). 11. T. Katsumata, H. Okada, T. Kimura, and T. Fukuda, J. Appl. Phys. 60, 3105 (1986). 12. B. T. A. Mc Kec, S. Saimoto, A. T. Stewart, and M. J. Stott, Can. J. Phys. 52, 759 (1974). 13. G. Dlubek , O. Brümmer, and A. Polity, Appl. Phys. Lett. 49,385 (1986(). 14. G. Dlubek , O. Brümmer, f. Plazaola, and P. Hautojärvi, J. Phys. C. 19, 331 (1986). 15. C. A. Dimitriadis, E. Huang, and S. M. Davison, Solid-State electron. 21, 1419 (1978). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | dbc02e39-958d-4885-acfb-131220e221ba | |
relation.isAuthorOfPublication | 68dabfe9-5aec-4207-bf8a-0851f2e37e2c | |
relation.isAuthorOfPublication.latestForDiscovery | dbc02e39-958d-4885-acfb-131220e221ba |
Download
Original bundle
1 - 1 of 1