Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the power structure over the Grothendieck ring of varieties and its applications

dc.contributor.authorGusein-Zade, Sabir Medgidovich
dc.contributor.authorLuengo Velasco, Ignacio
dc.contributor.authorMelle Hernández, Alejandro
dc.date.accessioned2023-06-20T10:34:15Z
dc.date.available2023-06-20T10:34:15Z
dc.date.issued2007-09
dc.descriptionPublished in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2007, Vol. 258, pp. 58–69.
dc.description.abstractWe discuss the notion of a power structure over a ring and the geometric description of the power structure over the Grothendieck ring of complex quasi-projective varieties and show some examples of applications to generating series of classes of configuration spaces (for example, nested Hilbert schemes of J. Cheah) and wreath product orbifolds.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipRussian Foundation for Basic Research
dc.description.sponsorshipNWO–RFBR
dc.description.sponsorshipJSPS–RFBR
dc.description.sponsorshipMTM
dc.description.sponsorshipINTAS
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20960
dc.identifier.doi10.1134/S0081543807030066
dc.identifier.issn1531-8605
dc.identifier.officialurlhttp://link.springer.com/article/10.1134/S0081543807030066
dc.identifier.relatedurlhttp://www.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50581
dc.issue.number1
dc.journal.titleProceedings of the Steklov Institute of Mathematics
dc.language.isoeng
dc.page.final64
dc.page.initial53
dc.publisherSpringer
dc.relation.projectID07-01-00593)
dc.relation.projectID047.011.2004.026
dc.relation.projectID06- 01-91063
dc.relation.projectID2004- 08080-C02-01
dc.relation.projectID05-7805)
dc.rights.accessRightsrestricted access
dc.subject.cdu512.774
dc.subject.keywordGrothendieck ring
dc.subject.keywordHilbert schemes.
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn the power structure over the Grothendieck ring of varieties and its applications
dc.typejournal article
dc.volume.number258
dcterms.referencesV. V. Batyrev, "Non-Archimedean Integrals and Stringy Euler Numbers of Log-Terminal Pairs," J. Eur. Math. Soc. 1, 5–33 (1999). J. Burillo, "The Poincaré-Hodge Polynomial of a Symmetric Product of Compact Kähler Manifolds," Collect. Math. 41, 59–69 (1990). J. Cheah, "On the Cohomology of Hilbert Schemes of Points," J. Algebr. Geom. 5, 479–511 (1996). J. Cheah, "The Virtual Hodge Polynomials of Nested Hilbert Schemes and Related Varieties," Math. Z. 227, 479–504 (1998). J. Cheah, "Cellular Decompositions for Nested Hilbert Schemes of Points," Pac. J. Math. 183, 39–90 (1998). L. Dixon, J. A. Harvey, C. Vafa, and E. Witten, "Strings on Orbifolds. I," Nucl. Phys. B 261, 678–686 (1985). L. Göttsche, "On the Motive of the Hilbert Scheme of Points on a Surface," Math. Res. Lett. 8, 613–627 (2001). S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, "A Power Structure over the Grothendieck Ring of Varieties," Math. Res. Lett. 11, 49–57 (2004). S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, "Power Structure over the Grothendieck Ring of Varieties and Generating Series of Hilbert Schemes of Points," Mich. Math. J. 54 (2), 353–359 (2006); S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, "Integration over Spaces of Nonparametrized Arcs and Motivic Versions of the Monodromy Zeta Function," Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 252, 71–82 (2006) [Proc. Steklov Inst. Math. 252, 63–73 (2006)]. M. Kapranov, "The Elliptic Curve in the S-Duality Theory and Eisenstein Series for Kac-Moody Groups, W.-P. Li and Zh. Qin, "On the Euler Numbers of Certain Moduli Spaces of Curves and Points," I. G. Macdonald, "The Poincaré Polynomial of a Symmetric Product," Proc. Cambridge Philos. Soc. 58, 563–568 (1962). MR0143204 (26 #764) H. Tamanoi, "Generalized Orbifold Euler Characteristic of Symmetric Products and Equivariant Morava K-Theory," Algebr. Geom. Topology 1, 115–141 (2001). W. Wang, "Equivariant K-Theory, Wreath Products, and Heisenberg Algebra," Duke Math. J. 103, 1–23 (2000). W. Wang and J. Zhou, "Orbifold Hodge Numbers of Wreath Product Orbifolds," J. Geom. Phys. 38, 152–169 (2001). E. Zaslow, "Topological Orbifold Models and Quantum Cohomology Rings," Commun. Math. Phys. 156, 301–331 (1993).
dspace.entity.typePublication
relation.isAuthorOfPublication2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce
relation.isAuthorOfPublicationc5f952f6-669f-4e3d-abc8-76d6ac56119b
relation.isAuthorOfPublication.latestForDiscovery2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gusseinluengomelle.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format

Collections