Efficient Synthesis of Muramic and Glucuronic Acid Glycodendrimers as Dengue Virus Antagonists

Citation
García‐Oliva C, Cabanillas AH, Perona A, Hoyos P, Rumbero Á, Hernáiz MJ. Efficient Synthesis of Muramic and Glucuronic Acid Glycodendrimers as Dengue Virus Antagonists. Chemistry A European J 2020;26:1588–96. https://doi.org/10.1002/chem.201903788.
Abstract
Carbohydrates are involved in many important pathological processes, such as bacterial and viral infections, by means of carbohydrate-protein interactions. Glycoconjugates with multiple carbohydrates are involved in multivalent interactions, thus increasing their binding strengths to proteins. In this work, we report the efficient synthesis of novel muramic and glucuronic acid glycodendrimers as potential Dengue virus antagonists. Aromatic scaffolds functionalized with a terminal ethynyl groups were coupled to muramic and glucuronic acid azides by click chemistry through optimized synthetic strategies to afford the desired glycodendrimers with high yields. Surface Plasmon Resonance studies have demonstrated that the compounds reported bind efficiently to the Dengue virus envelope protein. Molecular modelling studies were carried out to simulate and explain the binding observed. These studies confirm that efficient chemical synthesis of glycodendrimers can be brought about easily offering a versatile strategy to find new active compounds against Dengue virus.
Research Projects
Organizational Units
Journal Issue
Description
Keywords