Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Phase Transitions in Disordered Systems: The Example of the Random-Field Ising Model in Four Dimensions

dc.contributor.authorFytas, Nikolaos G.
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorPicco, Marco
dc.contributor.authorSourlas, Nicolas
dc.date.accessioned2023-06-18T06:54:39Z
dc.date.available2023-06-18T06:54:39Z
dc.date.issued2016-06-03
dc.description© 2016 American Physical Society. Our L=52, 60 lattices were simulated in the MareNostrum and Picasso supercomputers (we thankfully acknowledge the computer resources and assistance provided by the staff at the Red Española de Supercomputación). N. G. F. was supported by Royal Society Research Grant No. RG140201 and from a Research Collaboration Fellowship Scheme of Coventry University. V. M.-M. was supported by MINECO (Spain) through research Contract No. FIS2012-35719C02-01.
dc.description.abstractBy performing a high-statistics simulation of the D = 4 random-field Ising model at zero temperature for different shapes of the random-field distribution, we show that the model is ruled by a single universality class. We compute to a high accuracy the complete set of critical exponents for this class, including the correction-to-scaling exponent. Our results indicate that in four dimensions (i) dimensional reduction as predicted by the perturbative renormalization group does not hold and (ii) three independent critical exponents are needed to describe the transition.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipRoyal Society (Reino Unido)
dc.description.sponsorshipResearch Collaboration Fellowship Scheme of Coventry University
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/38431
dc.identifier.doi10.1103/PhysRevLett.116.227201
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.116.227201
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24562
dc.issue.number22
dc.journal.titlePhysical review letters
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDRG140201
dc.relation.projectIDFIS2012-35719C02-01
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordZero-temperature
dc.subject.keywordUniversality
dc.subject.keywordScattering
dc.subject.keywordExponents
dc.subject.keywordSymmetry
dc.subject.ucmFísica-Modelos matemáticos
dc.titlePhase Transitions in Disordered Systems: The Example of the Random-Field Ising Model in Four Dimensions
dc.typejournal article
dc.volume.number116
dcterms.references1. Y. Imry and S.-k. Ma, Phys. Rev. Lett. 35, 1399 (1975). 2. G. Parisi, Field Theory, Disorder and Simulations (World Scientific, Singapore, 1994). 3. T. Nattermann, in Spin Glasses and Random Fields, edited by A. P. Young (World Scientific, Singapore, 1998). 4. D. P. Belanger, in Spin Glasses and Random Fields, edited by A. P. Young (World Scientific, Singapore, 1998). 5. N. G. Fytas and V. Martín-Mayor, arXiv:1512.06571. 6. S. Franz, G. Parisi, and F. Ricci-Tersenghi, J. Stat. Mech. (2013) L02001. 7. S. Franz and G. Parisi, J. Stat. Mech. (2013) P11012. 8. G. Biroli, C. Cammarota, G. Tarjus, and M. Tarzia, Phys. Rev. Lett. 112, 175701 (2014). 9. K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974). 10. J. Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984). 11. J. Bricmont and A. Kupiainen, Phys. Rev. Lett. 59, 1829 (1987). 12. M. Aizenman and J. Wehr, Commun. Math. Phys. 130, 489 (1990). 13. S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975). 14. A. Aharony, Phys. Rev. B 18, 3318 (1978). 15. G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979). 16. G. Parisi and N. Sourlas, Phys. Rev. Lett. 46, 871 (1981). 17. A. P. Young, J. Phys. C 10, L257 (1977). 18. See Refs. [2, 19, 20, 21] for possible sources of nonperturbative behavior. 19. M. Mézard and A. P. Young, Europhys. Lett. 18, 653 (1992). 20. M. Mézard and R. Monasson, Phys. Rev. B 50, 7199 (1994). 21. G. Parisi and N. Sourlas, Phys. Rev. Lett. 89, 257204 (2002). 22. J. Villain, J. Phys. (Paris) 46, 1843 (1985). 23. A. J. Bray and M. A. Moore, J. Phys. C 18, L927 (1985). 24. D. S. Fisher, Phys. Rev. Lett. 56, 416 (1986). 25. For T>0, C(con)xy=⟨SxSy⟩−⟨Sx⟩⟨Sy⟩¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯/T, hence the name connected propagator. 26. Z. Slanič, D. P. Belanger, and J. A. Fernandez-Baca, Phys. Rev. Lett. 82, 426 (1999). 27. F. Ye, M. Matsuda, S. Katano, H. Yoshizawa, D. Belanger, E. Seppälä, J. Fernandez-Baca, and M. Alava, J. Magn. Magn. Mater. 272–276, Part 2, 1298 (2004);Proceedings of the International Conference on Magnetism (ICM, Rome, 2003). 28. M. Schwartz and A. Soffer, Phys. Rev. B 33, 2059 (1986). 29. M. Schwartz, M. Gofman, and T. Natterman, Physica (Amsterdam) 178A, 6 (1991). 30. M. Gofman, J. Adler, A. Aharony, A. B. Harris, and M. Schwartz, Phys. Rev. Lett. 71, 1569 (1993). 31. M. Tissier and G. Tarjus, Phys. Rev. Lett. 107, 041601 (2011). 32. M. Tissier and G. Tarjus, Phys. Rev. B 85, 104203 (2012). 33. G. Tarjus, I. Balog, and M. Tissier, Europhys. Lett. 103, 61001 (2013). 34. J.-C. Anglès d’Auriac, M. Preissmann, and R. Rammal, J. Phys. Lett. 46, 173 (1985). 35. A. V. Goldberg and R. E. Tarjan, J. Assoc. Comput. Mach. 35, 921 (1988). 36. A. T. Ogielski, Phys. Rev. Lett. 57, 1251 (1986). 37. J.-C. Anglès d’Auriac and N. Sourlas, Europhys. Lett. 39, 473 (1997). 38. M. R. Swift, A. J. Bray, A. Maritan, M. Cieplak, and J. R. Banavar, Europhys. Lett. 38, 273 (1997). 39. N. Sourlas, Comput. Phys. Commun. 121–122, 183 (1999); Proceedings of the Europhysics Conference on Computational Physics (CCP, Granada, 1998). 40. A. K. Hartmann and U. Nowak, Eur. Phys. J. B 7, 105 (1999). 41. A. A. Middleton, Phys. Rev. Lett. 88, 017202 (2001). 42. A. K. Hartmann and A. P. Young, Phys. Rev. B 64, 214419 (2001). 43. A. A. Middleton and D. S. Fisher, Phys. Rev. B 65, 134411 (2002). 44. I. Dukovski and J. Machta, Phys. Rev. B 67, 014413 (2003). 45. Y. Wu and J. Machta, Phys. Rev. Lett. 95, 137208 (2005). 46. Y. Wu and J. Machta, Phys. Rev. B 74, 064418 (2006). 47. N. G. Fytas and V. Martín-Mayor, Phys. Rev. Lett. 110, 227201 (2013). 48. M. Picco and N. Sourlas, J. Stat. Mech. (2014) P03019. 49. A. K. Hartmann, Phys. Rev. B 65, 174427 (2002). 50. A. A. Middleton, arXiv:cond-mat/0208182. 51. B. Ahrens and A. K. Hartmann, Phys. Rev. B 83, 014205 (2011). 52. M. Picco and N. Sourlas, Europhys. Lett. 109, 37001 (2015). 53. On the other hand, 0≤2η−η¯ is valid for all D [30]. 54. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.116.227201 for the parameters of the simulations; evidence for subleading corrections to scaling; χ2 for combined fits; details on the extrapolation to L=∞ for ξ(dis)/L, U4 and ν. 55. D. J. Amit and V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, 3rd ed. (World Scientific, Singapore, 2005). 56. M. Nightingale, Physica (Amsterdam) 83A, 561 (1976). 57. H. G. Ballesteros, L. A. Fernandez, V. Martín-Mayor, and A. Muñoz Sudupe, Phys. Lett. B 378, 207 (1996). 58. H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Phys. Rev. B58, 2740 (1998).
dspace.entity.typePublication
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication.latestForDiscovery061118c0-eadf-4ee3-8897-2c9b65a6df66

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MartínMayorV LIBRE 41.pdf
Size:
238.97 KB
Format:
Adobe Portable Document Format

Collections