Simulation of digital mammographic images using GAMOS: Proof of concept

dc.contributor.authorFrancisco Rafael Lozano
dc.contributor.authorSánchez Lara, Víctor
dc.contributor.authorCarlos Huerga Cabrerizo
dc.contributor.authorLuis Carlos Martínez Gómez
dc.contributor.authorGarcía Pinto, Diego
dc.date.accessioned2026-01-13T11:03:33Z
dc.date.available2026-01-13T11:03:33Z
dc.date.issued2025-04-29
dc.description.abstractPurpose: To present a simulation pipeline for digital mammography based on the GAMOS framework, enabling realistic image formation and dose estimation using high-fidelity anatomical phantoms and flexible detector modeling. Methods: A complete in silico model was implemented using GAMOS and GEANT4, including a Siemens Mammomat Inspiration system geometry, VICTRE voxelized breast phantoms, and two detector models: a direct conversion detector (MCD) and a virtual detector (VD). The simulation incorporated an anti-scatter grid, dose scoring tools, and a GUI for parameter adjustment. Performance metrics were calculated according to IEC 62220-1-2:2007. Results: The simulation yielded realistic mammographic images and accurate dose estimates. The MTF, NNPS, and DQE were calculated for both detector models and compared against published values. Maximum DQE differences were approximately 20%, with comparisons performed at spatial frequencies of 0.5, 2.0 and 5.0 mm−1. The MTF50% was 4.25 mm−1 (VD) and 4.35 mm−1 (MCD). Anatomical noise analysis showed β values between 2.67 and 3.16, consistent with clinical data. Dose validation against AAPM TG-195 showed differences below 1.08%. Conclusion: The proposed simulation framework is capable of producing realistic mammographic images and accurate dose calculations using an accessible interface. This tool is suitable for virtual clinical trials and system performance evaluation, and allows further extension to advanced imaging techniques such as contrast-enhanced or phase-contrast mammography. Code: https://github.com/PREDICO-Project/MIMAC
dc.description.departmentDepto. de Radiología, Rehabilitación y Fisioterapia
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.statuspub
dc.identifier.citationF.R. Lozano, V. Sanchez-Lara, C. Huerga, Luis C. Martinez-Gomez, D. Garcia-Pinto, Simulation of digital mammographic images using GAMOS: Proof of concept, Physica Medica, Volume 135, 2025, 104995, ISSN 1120-1797, https://doi.org/10.1016/j.ejmp.2025.104995.
dc.identifier.doi10.1016/j.ejmp.2025.104995
dc.identifier.officialurlhttps://doi.org/10.1016/J.EJMP.2025.104995
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S112017972500105X?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/130026
dc.journal.titlePhysica Medica
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123390OB-C22/ES/EXPERIMENTOS PRECLINICOS PARA EL DESARROLLO Y OPTIMIZACION DE NUEVAS MODALIDADES DE IMAGEN PARA CANCER DE MAMA/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordMammography
dc.subject.keywordGeant4
dc.subject.keywordMonte carlo
dc.subject.keywordBreast imaging
dc.subject.keywordSimulation
dc.subject.ucmDiagnóstico por imagen y medicina nuclear
dc.subject.unesco2299 Otras Especialidades Físicas
dc.titleSimulation of digital mammographic images using GAMOS: Proof of concept
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number135
dspace.entity.typePublication
relation.isAuthorOfPublication175ed07f-ddaa-4cca-98d5-fc558b973ecc
relation.isAuthorOfPublication7c75d106-b698-42ee-bfea-fe4a2b11b7f8
relation.isAuthorOfPublication.latestForDiscovery175ed07f-ddaa-4cca-98d5-fc558b973ecc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lozano et al. (2025). Simulation of Digital Mammography Using GAMOS. Phys. Med.pdf
Size:
2.53 MB
Format:
Adobe Portable Document Format

Collections