Hybrid sol-gel coatings applied on anodized AA2024-T3 for active corrosion protection
dc.contributor.author | Olmo Martínez, Rubén del | |
dc.contributor.author | Tiringer, U. | |
dc.contributor.author | Milosev, I | |
dc.contributor.author | Visser, P. | |
dc.contributor.author | Arrabal Durán, Raúl | |
dc.contributor.author | Matykina, Endzhe | |
dc.date.accessioned | 2023-06-16T14:20:31Z | |
dc.date.available | 2023-06-16T14:20:31Z | |
dc.date.issued | 2021-08-15 | |
dc.description.abstract | The effect of the presence of an anodic film and hybrid sol-gel coating loaded with corrosion inhibitors was evaluated as a strategy for enhanced barrier and active corrosion protection of aluminium alloy 2024-T3. In this study, AA2024-T3 specimens were anodized in a modified sulphuric-citric acid bath (SCA) as the first layer of a corrosion protective multilayer system and subsequently protected by the application of silica-based hybrid sol-gel coatings. These coatings were doped with LiNO3 and Ce(NO3)3 as corrosion inhibitors and studied in comparison with the inhibitor-free sol-gel coating in terms of morphology, composition and corrosion protection of intact and scribed specimens. The anodized AA2024-T3 with an overlaying inhibitor-free sol-gel coating showed the highest impedance modulus during long-term immersion in 0.1 mol·L−1 NaCl aqueous solution. Active corrosion protection of scribed coated specimens was studied by exposure to a 0.5 mol·L−1 NaCl solution and evaluated by surface analytical techniques. The addition of Li- and Ce-based salts into the hybrid sol-gel formulation showed active corrosion protection compared to the inhibitor-free scribed hybrid sol-gel coating. The Ce-doped sol-gel coating showed less visual corrosion and higher active corrosion protection than the Li-containing one during the long-term immersion test in 0.5 mol·L−1 NaCl. Present findings reveal that the combination of the anodic/hybrid sol-gel layers on AA2024-T3 enhances the corrosion protective properties barrier properties of both stand-alone systems and the incorporation of Li- and Ce-based inhibitors provide active corrosion. | |
dc.description.department | Depto. de Ingeniería Química y de Materiales | |
dc.description.faculty | Fac. de Ciencias Químicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Unión Europea. Horizonte 2020 | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN)/FEDER | |
dc.description.sponsorship | Comunidad de Madrid/ FEDER | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/70858 | |
dc.identifier.doi | 10.1016/j.surfcoat.2021.127251 | |
dc.identifier.issn | 0257-8972 | |
dc.identifier.officialurl | https://doi.org/10.1016/j.surfcoat.2021.127251 | |
dc.identifier.relatedurl | https://www.sciencedirect.com/science/article/pii/S0257897221004254#bi0005 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/4746 | |
dc.journal.title | Surface & coatings technology | |
dc.language.iso | eng | |
dc.page.initial | 127251 | |
dc.publisher | Elsevier Science | |
dc.relation.projectID | LEaDing Fellows (707404) | |
dc.relation.projectID | PROFABRICAD (RTI2018-096391-B-C33) | |
dc.relation.projectID | ADITIMAT-CM (S2018/NMT-4411) | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.cdu | 66.0 | |
dc.subject.cdu | 620 | |
dc.subject.keyword | AA2024-T3 | |
dc.subject.keyword | Anodizing | |
dc.subject.keyword | Sol-gel coatings | |
dc.subject.keyword | Corrosion inhibitor | |
dc.subject.keyword | Active corrosion protection | |
dc.subject.ucm | Ingeniería química | |
dc.subject.ucm | Materiales | |
dc.subject.unesco | 3303 Ingeniería y Tecnología Químicas | |
dc.subject.unesco | 3312 Tecnología de Materiales | |
dc.title | Hybrid sol-gel coatings applied on anodized AA2024-T3 for active corrosion protection | |
dc.type | journal article | |
dc.volume.number | 419 | |
dcterms.references | A.P. Mouritz 8 - aluminium alloys for aircraft structures A.P. Mouritz (Ed.), Introduction to Aerospace Materials, Woodhead Publishing (2012), pp. 173-201 Google Scholar [2] M.G.S. Ferreira, M.L. Zheludkevich, J. Tedim Advanced Protective Coatings for Aeronautical Applications, Nanocoatings and Ultra-thin Films Technologies and Applications (2011), pp. 235-279 ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar [3] P. Visser, H. Terryn, J.M.C. Mol Aerospace coatings Springer Series in Materials Science (2016), pp. 315-372 View PDFCrossRefView Record in ScopusGoogle Scholar [4] LANXESS Surface Treatment for Applications in the Aeronautics and Aerospace Industries, Analysis of Alternatives, Non-confidential Report Available from: https://echa.europa.eu/es/support/substance-identification (2018), p. 137 Google Scholar [5] R.L. Twite, G.P. Bierwagen Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys Prog. Org. Coat., 33 (1998), pp. 91-100 ArticleDownload PDFView Record in ScopusGoogle Scholar [6] O. Gharbi, S. Thomas, C. Smith, N. Birbilis Chromate replacement: what does the future hold? npj Mater. Degrad., 2 (2018), p. 12 View PDFView Record in ScopusGoogle Scholar [7] M. Becker Chromate-free chemical conversion coatings for aluminum alloys Corros. Rev., 37 (2019), pp. 321-342 View PDFCrossRefView Record in ScopusGoogle Scholar [8] S.T. Abrahami, J.M.M. de Kok, H. Terryn, J.M.C. Mol Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications: a review Front. Chem. Sci. Eng., 11 (2017), pp. 465-482 View PDFCrossRefView Record in ScopusGoogle Scholar [9] Use of potassium dichromate for sealing after anodizing applications by aerospace companies and their suppliers, 2018, Available from: https://echa.europa.eu/documents/10162/d6c88cd1-ef18-460b-8493-e1d59211a888, Haas Group International, pp. 65. Google Scholar [10] K. Barton, M. Cullen, B. Duffy Sol-gel chemistry engineering for corrosion protection Sol-gel Materials for Energy, Environment and Electronic Applications (2017), pp. 197-241 View PDFCrossRefView Record in ScopusGoogle Scholar [11] L.G. Ecco, M. Fedel, F. Deflorian, J. Becker, B.B. Iversen, A. Mamakhel Waterborne acrylic paint system based on nanoceria for corrosion protection of steel Prog. Org. Coat., 96 (2016), pp. 19-25 ArticleDownload PDFView Record in ScopusGoogle Scholar [12] M. Paz Martínez-Viademonte, S.T. Abrahami, T. Hack, M. Burchardt, H. Terryn A Review on Anodizing of Aerospace Aluminum Alloys for Corrosion Protection 10 (2020), p. 1106 Google Scholar [13] Z. Ding, B.A. Smith, R.R. Hebert, W. Zhang, M.R. Jaworowski Morphology perspective on chromic acid anodizing replacement by thin film sulfuric acid anodizing Surf. Coat. Technol., 350 (2018), pp. 31-39 ArticleDownload PDFView Record in ScopusGoogle Scholar [14] J.M. Runge The Metallurgy of Anodizing Aluminium Springer Nature (2018) Google Scholar [15] A. Yerokhin, R.H.U. Khan 4 - anodising of light alloys H. Dong (Ed.), Surface Engineering of Light Alloys, Woodhead Publishing (2010), pp. 83-109 ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar [16] M.E.N. Beck Performance Validation of Thin-film Sulfuric Acid Anodization (TFSAA) on Aluminum Alloys Naval Air Systems Command (NAVAIR) (2003) Google Scholar [17] R. Giovanardi, C. Fontanesi, W. Dallabarba Adsorption of organic compounds at the aluminium oxide/aqueous solution interface during the aluminium anodizing process Electrochim. Acta, 56 (2011), pp. 3128-3138 ArticleDownload PDFView Record in ScopusGoogle Scholar [18] T. Kikuchi, D. Nakajima, O. Nishinaga, S. Natsui, R. Suzuki Porous aluminum oxide formed by anodizing in various electrolyte species Curr. Nanosci., 11 (2015) Google Scholar [19] A.E. Koczera The Effects of Carboxylic Acids in Aluminum Anodizing University of New Hampshire (2017), p. 330 View Record in ScopusGoogle Scholar [20] T. Vignoli Machado, P. Atz Dick, G.H. Knörnschild, L.F.P. Dick The effect of different carboxylic acids on the sulfuric acid anodizing of AA2024 Surf. Coat. Technol., 383 (2020), Article 125283 View Record in ScopusGoogle Scholar [21] M. Xiangfeng, G. Wei, G. Hongliang, Y. Yundan, C. Ying, H. Dettinger Anodization for 2024 Al alloy from sulfuric-citric acid and anticorrosion performance of anodization films Int. J. Electrochem. Sci., 8 (2013), pp. 10660-10671 View PDFView Record in ScopusGoogle Scholar [22] H. Jalal, Y. Saoud, F. Karabet Effect of organic additives on AA6066 anodization J. Chem. Technol. Metall., 54 (2019), pp. 447-453 View Record in ScopusGoogle Scholar [23] R.B. Figueira Hybrid sol–gel coatings for corrosion mitigation: a critical review Polymers, 12 (2020), p. 689 View PDFCrossRefView Record in ScopusGoogle Scholar [24] R. Figueira, C. Silva, E. Pereira, Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: a review of recent progress, J. Coat. Technol. Res., https://doi.org/10.1007/s11998-014-9595-6(2014). Google Scholar [25] C.J. Brinker, G.W. Scherer CHAPTER 10 - surface chemistry and chemical modification C.J. Brinker, G.W. Scherer (Eds.), Sol-Gel Science, Academic Press, San Diego (1990), pp. 616-672 ArticleDownload PDFView Record in ScopusGoogle Scholar [26] S. Zheng, J. Li Inorganic–organic sol gel hybrid coatings for corrosion protection of metals J. Sol-Gel Sci. Technol., 54 (2010), pp. 174-187 View PDFCrossRefView Record in ScopusGoogle Scholar [27] J. Wen, G.L. Wilkes Organic/inorganic hybrid network materials by the sol−gel approach Chem. Mater., 8 (1996), pp. 1667-1681 View PDFView Record in ScopusGoogle Scholar [28] D. Balgude, A. Sabnis Sol–gel derived hybrid coatings as an environment friendly surface treatment for corrosion protection of metals and their alloys J. Sol-Gel Sci. Technol., 64 (2012), pp. 124-134 View PDFCrossRefView Record in ScopusGoogle Scholar [29] H. Wang, R. Akid Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion sol–gel coatings on mild steel Corros. Sci., 50 (2008), pp. 1142-1148 ArticleDownload PDFView Record in ScopusGoogle Scholar [30] S. He Lithium and Cerium Based Sol-Gel Coatings for Corrosion Protection of AA2024-T3 Delft University of Technology (2020) Google Scholar [31] A. Galio, C. Dariva Corrosion Inhibitors – Principles, Mechanisms and Applications (2014), pp. 365-380 Google Scholar [32] G. Yoganandan, K. Pradeep Premkumar, J.N. Balaraju Evaluation of corrosion resistance and self-healing behavior of zirconium–cerium conversion coating developed on AA2024 alloy Surf. Coat. Technol., 270 (2015), pp. 249-258 ArticleDownload PDFView Record in ScopusGoogle Scholar [33] W. Trabelsi, P. Cecilio, M.G.S. Ferreira, M.F. Montemor Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for the pre-treatment of galvanised steel substrates Prog. Org. Coat., 54 (2005), pp. 276-284 ArticleDownload PDFView Record in ScopusGoogle Scholar [34] K.A. Yasakau, M.L. Zheludkevich, S.V. Lamaka, M.G.S. Ferreira Mechanism of corrosion inhibition of AA2024 by rare-earth compounds J. Phys. Chem. B, 110 (2006), pp. 5515-5528 View PDFCrossRefView Record in ScopusGoogle Scholar [35] A.J. Aldykiewicz, A.J. Davenport, H.S. Isaacs Studies of the formation of cerium-rich protective films using X-ray absorption near-edge spectroscopy and rotating disk electrode methods J. Electrochem. Soc., 143 (1996), pp. 147-154 View PDFCrossRefView Record in ScopusGoogle Scholar [36] U. Tiringer, B. Mušič, D. Zimerl, G. Šekularac, S. Stavber, I. Milošev The effects of cerium ions on the curing, polymerisation and condensation of hybrid sol-gel coatings J. Non-Cryst. Solids, 510 (2019), pp. 93-100 ArticleDownload PDFView Record in ScopusGoogle Scholar [37] P. Visser, H. Terryn, J.M.C. Mol Active corrosion protection of various aluminium alloys by lithium-leaching coatings Surf. Interface Anal., 51 (2019), pp. 1276-1287 View PDFCrossRefView Record in ScopusGoogle Scholar [38] P. Visser, M. Meeusen, Y. Gonzalez-Garcia, H. Terryn, J.M.C. Mol Electrochemical evaluation of corrosion inhibiting layers formed in a defect from lithium-leaching organic coatings J. Electrochem. Soc., 164 (2017), pp. 396-406 View PDFCrossRefView Record in ScopusGoogle Scholar [39] P. Visser, K. Marcoen, G.F. Trindade, M.L. Abel, J.F. Watts, T. Hauffman, J.M.C. Mol, H. Terryn The chemical throwing power of lithium-based inhibitors from organic coatings on AA2024-T3 Corros. Sci., 150 (2019), pp. 194-206 ArticleDownload PDFView Record in ScopusGoogle Scholar [40] P. Visser, Y. Liu, X. Zhou, T. Hashimoto, G.E. Thompson, S.B. Lyon, L.G.J. van der Ven, A.J.M.C. Mol, H.A. Terryn The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatings Faraday Discuss., 180 (2015), pp. 511-526 View PDFCrossRefView Record in ScopusGoogle Scholar [41] P. Visser, Y. Liu, H. Terryn, J.M.C. Mol Lithium salts as leachable corrosion inhibitors and potential replacement for hexavalent chromium in organic coatings for the protection of aluminum alloys J. Coat. Technol. Res., 13 (2016), pp. 1-10 Google Scholar [42] J. Gui, T.M. Devine Influence of lithium on the corrosion of aluminum Scr. Metall., 21 (1987), pp. 853-857 ArticleDownload PDFView Record in ScopusGoogle Scholar [43] R. Buchheit, M. Bode, G. Stoner Corrosion-resistant, chromate-free talc coatings for aluminum Corrosion, 50 (1994), pp. 205-214 View PDFCrossRefView Record in ScopusGoogle Scholar [44] P. Visser, A. Lutz, J.M.C. Mol, H. Terryn Study of the formation of a protective layer in a defect from lithium-leaching organic coatings Prog. Org. Coat., 99 (2016), pp. 80-90 ArticleDownload PDFView Record in ScopusGoogle Scholar [45] A. Trentin, S.V. Harb, M.C. Uvida, S.H. Pulcinelli, C.V. Santilli, K. Marcoen, S. Pletincx, H. Terryn, T. Hauffman, P. Hammer Dual role of lithium on the structure and self-healing ability of PMMA-silica coatings on AA7075 alloy ACS Appl. Mater. Interfaces, 11 (2019), pp. 40629-40641 View PDFCrossRefView Record in ScopusGoogle Scholar [46] M. Terada, F.M. Queiroz, D.B.S. Aguiar, V.H. Ayusso, H. Costenaro, M.G. Olivier, H.G. de Melo, I. Costa Corrosion resistance of tartaric-sulfuric acid anodized AA2024-T3 sealed with Ce and protected with hybrid sol–gel coating Surf. Coat. Technol., 372 (2019), pp. 422-426 ArticleDownload PDFView Record in ScopusGoogle Scholar [47] H. Costenaro, A. Lanzutti, Y. Paint, L. Fedrizzi, M. Terada, H.G. de Melo, M.G. Olivier Corrosion resistance of 2524 Al alloy anodized in tartaric-sulphuric acid at different voltages and protected with a TEOS-GPTMS hybrid sol-gel coating Surf. Coat. Technol., 324 (2017), pp. 438-450 ArticleDownload PDFView Record in ScopusGoogle Scholar [48] M. Whelan, E. Tobin, J. Cassidy, B. Duffy Optimization of anodic oxidation of aluminum for enhanced adhesion and corrosion properties of sol-gel coatings J. Electrochem. Soc., 163 (2016), pp. C205-C212 View PDFCrossRefView Record in ScopusGoogle Scholar [49] V.R. Capelossi, M. Poelman, I. Recloux, R.P.B. Hernandez, H.G. de Melo, M.G. Olivier Corrosion protection of clad 2024 aluminum alloy anodized in tartaric-sulfuric acid bath and protected with hybrid sol–gel coating Electrochim. Acta, 124 (2014), pp. 69-79 ArticleDownload PDFView Record in ScopusGoogle Scholar [50] S.M. Beden, S. Abdullah, A.K. Ariffin, N.A. Al-Asady Fatigue crack growth simulation of aluminium alloy under spectrum loadings Mater. Des., 31 (2010), pp. 3449-3456 ArticleDownload PDFView Record in ScopusGoogle Scholar [51] Military Specification Anodic Coatings for Aluminum and Aluminum Alloys (MIL-A-8625F), Departments and Agencies of the Department of Defense (1993) Google Scholar [52] G. Boisier, N. Pébère, C. Druez, M. Villatte, S. Suel FESEM and EIS study of sealed AA2024 T3 anodized in sulfuric acid electrolytes: influence of tartaric acid J. Electrochem. Soc., 155 (2008) Google Scholar [53] M. Curioni, P. Skeldon, E. Koroleva, G. Thompson, J. Ferguson Role of tartaric acid on the anodizing and corrosion behavior of AA 2024 T3 aluminum alloy J. Electrochem. Soc., 156 (2009), pp. C147-C153 View PDFCrossRefView Record in ScopusGoogle Scholar [54] A. Bodor, I. Bányai, L. Zékány, I. Tóth Slow dynamics of aluminium-citrate complexes studied by 1H- and 13C-NMR spectroscopy Coord. Chem. Rev., 228 (2002), pp. 163-173 ArticleDownload PDFView Record in ScopusGoogle Scholar [55] R.J. Motekaitis, A.E. Martell Complexes of aluminum(III) with hydroxy carboxylic acids Inorg. Chem., 23 (1984), pp. 18-23 View PDFCrossRefView Record in ScopusGoogle Scholar [56] Y. Ma, Y. Wen, J. Li, J. Lu, Y. Li, Y. Yang, C. Feng, C. Hao, Z. Zhang, J. Hu, R. Sun Pore nucleation mechanism of self-ordered alumina with large period in stable anodization in citric acid J. Electrochem. Soc., 165 (2018), pp. E311-E317 View PDFCrossRefView Record in ScopusGoogle Scholar [57] D.R. Lide CRC Handbook of Chemistry and Physics: A Ready-Reference of Chemical and Physical Data (85th ed.), American Chemical Society (2005) Google Scholar [58] S.J. Garcia-Vergara, K. El Khazmi, P. Skeldon, G.E. Thompson Influence of copper on the morphology of porous anodic alumina Corros. Sci., 48 (2006), pp. 2937-2946 ArticleDownload PDFView Record in ScopusGoogle Scholar [59] C. Girginov, S. Kozhukharov, M. Milanes, M. Machkova Impact of the anodizing duration on the surface morphology and performance of A2024-T3 in a model corrosive medium Mater. Chem. Phys., 198 (2017), pp. 137-144 ArticleDownload PDFView Record in ScopusGoogle Scholar [60] M. Arenas-Vara, P. Skeldon, S. García-Vergara Effect of copper-enriched layers on localized corrosion of aluminium-copper alloys Revista Facultad de Ingeniería, 27 (2018) Google Scholar [61] B. Mingo, A. Němcová, D. Hamad, R. Arrabal, E. Matykina, M. Curioni, P. Skeldon, G. Thompson Efficiency of anodising of Al–Cu alloy in sulphuric acid at low potentials Trans. IMF, 93 (2015), pp. 18-23 View PDFCrossRefView Record in ScopusGoogle Scholar [62] M.A. van Put, S.T. Abrahami, O. Elisseeva, J.M.M. de Kok, J.M.C. Mol, H. Terryn Potentiodynamic anodizing of aluminum alloys in Cr(VI)-free electrolytes Surf. Interface Anal., 48 (2016), pp. 946-952 Google Scholar [63] A. Wittmar, H. Caparrotti, M. Wittmar, M. Veith Simple preparation routes for corrosion protection hybrid sol-gel coatings on AA 2024 Surf. Interface Anal., 44 (2012), pp. 70-77 View PDFCrossRefView Record in ScopusGoogle Scholar [64] N. Pirhady Tavandashti, S. Sanjabi, T. Shahrabi Evolution of corrosion protection performance of hybrid silica based sol-gel nanocoatings by doping inorganic inhibitor Mater. Corros., 62 (2011), pp. 411-415 Google Scholar [65] M.J. Bartolomé, V. López, E. Escudero, G. Caruana, J.A. González Changes in the specific surface area of porous aluminium oxide films during sealing Surf. Coat. Technol., 200 (2006), pp. 4530-4537 ArticleDownload PDFView Record in ScopusGoogle Scholar [66] J.-B. Cambon, J. Esteban, F. Ansart, J.-P. Bonino, V. Turq, S.H. Santagneli, C.V. Santilli, S.H. Pulcinelli Effect of cerium on structure modifications of a hybrid sol–gel coating, its mechanical properties and anti-corrosion behavior Mater. Res. Bull., 47 (2012), pp. 3170-3176 ArticleDownload PDFView Record in ScopusGoogle Scholar [67] J. Gandhi, S. Singh, W.J.v. Ooij, P. Puomi Evidence for formation of metallo-siloxane bonds by comparison of dip-coated and electrodeposited silane films J. Adhes. Sci. Technol., 20 (2006), pp. 1741-1768 View PDFCrossRefView Record in ScopusGoogle Scholar [68] U. Tiringer, A. Durán, Y. Castro, I. Milošev Self-healing effect of hybrid sol-gel coatings based on GPTMS, TEOS, SiO2 nanoparticles and Ce(NO3)3 applied on aluminum alloy 7075-T6 J. Electrochem. Soc., 165 (2018), pp. C213-C225 View PDFCrossRefView Record in ScopusGoogle Scholar [69] J. Goldstein, D. Newbury, P. Echlin, D. Joy, C. Lyman, E. Lifshin, L. Sawyer, J. Michael J. Goldstein (Ed.), Scanning Electron Microscopy and X-ray Microanalysis, Springer, Boston (2003), pp. 591-619 View PDFCrossRefGoogle Scholar [70] A. Lasia Electrochemical Impedance Spectroscopy and Its Applications (1999), pp. 143-248 View Record in ScopusGoogle Scholar [71] U. Tiringer, I. Milošev, A. Durán, Y. Castro, Hybrid sol–gel coatings based on GPTMS/TEOS containing colloidal SiO2 and cerium nitrate for increasing corrosion protection of aluminium alloy 7075-T6, J. Sol-Gel Sci. Technol., https://doi.org/10.1007/s10971-017-4577-7(2018). Google Scholar [72] L. Paussa, N.C. Rosero-Navarro, F. Andreatta, Y. Castro, A. Duran, M. Aparicio, L. Fedrizzi Inhibition effect of cerium in hybrid sol–gel films on aluminium alloy AA2024 Surf. Interface Anal., 42 (2010), pp. 299-305 View PDFCrossRefView Record in ScopusGoogle Scholar [73] Y. Castro, E. Özmen, A. Durán Integrated self-healing coating system for outstanding corrosion protection of AA2024 Surf. Coat. Technol., 387 (2020), Article 125521 ArticleDownload PDFView Record in ScopusGoogle Scholar [74] P.L. Bonora, F. Deflorian, L. Fedrizzi Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion Electrochim. Acta, 41 (1996), pp. 1073-1082 ArticleDownload PDFView Record in ScopusGoogle Scholar [75] V. Moutarlier, M.P. Gigandet, B. Normand, J. Pagetti EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species Corros. Sci., 47 (2005), pp. 937-951 ArticleDownload PDFGoogle Scholar [76] T.T. Thai, M.E. Druart, Y. Paint, A.T. Trinh, M.G. Olivier Influence of the sol-gel mesoporosity on the corrosion protection given by an epoxy primer applied on aluminum alloy 2024–T3 Prog. Org. Coat., 121 (2018), pp. 53-63 ArticleDownload PDFView Record in ScopusGoogle Scholar [77] M.L. Zheludkevich, R. Serra, M.F. Montemor, K.A. Yasakau, I.M.M. Salvado, M.G.S. Ferreira Nanostructured sol–gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3: corrosion protection performance Electrochim. Acta, 51 (2005), pp. 208-217 ArticleDownload PDFGoogle Scholar [78] T.T. Thai, A.T. Trinh, M.-G. Olivier Hybrid sol–gel coatings doped with cerium nanocontainers for active corrosion protection of AA2024 Prog. Org. Coat., 138 (2020), Article 105428 ArticleDownload PDFView Record in ScopusGoogle Scholar [79] N.C. Rosero-Navarro, L. Paussa, F. Andreatta, Y. Castro, A. Durán, M. Aparicio, L. Fedrizzi Optimization of hybrid sol–gel coatings by combination of layers with complementary properties for corrosion protection of AA2024 Prog. Org. Coat., 69 (2010), pp. 167-174 ArticleDownload PDFView Record in ScopusGoogle Scholar [80] P. Rodič, I. Milošev Corrosion Inhibition of Pure Aluminium and Alloys AA2024-T3 and AA7075-T6 by Cerium(III) and Cerium(IV) Salts (2016) Google Scholar [81] R.V. Lakshmi, S.T. Aruna, C. Anandan, P. Bera, S. Sampath EIS and XPS studies on the self-healing properties of Ce-modified silica-alumina hybrid coatings: evidence for Ce(III) migration Surf. Coat. Technol., 309 (2017), pp. 363-370 ArticleDownload PDFView Record in ScopusGoogle Scholar [82] P. Yu, S.A. Hayes, T.J. O’Keefe, M.J. O’Keefe, J.O. Stoffer The phase stability of cerium species in aqueous systems J. Electrochem. Soc., 153 (2006), p. C74 View PDFCrossRefView Record in ScopusGoogle Scholar [83] J. De Damborenea, A. Conde, M.A. Arenas Corrosion inhibition with rare earth metal compounds in aqueous solutions Rare Earth-based Corrosion Inhibitors (2014), pp. 84-116 Google Scholar [84] K. Barton, M. Cullen, B. Duffy Sol-Gel Chemistry Engineering for Corrosion Protection (2017), pp. 197-241 View PDFCrossRefView Record in ScopusGoogle Scholar | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6a953ac5-3b84-40fc-a995-2a00ac938151 | |
relation.isAuthorOfPublication | 427b12dd-40e9-49e6-a8fe-d41e79a056ff | |
relation.isAuthorOfPublication.latestForDiscovery | 6a953ac5-3b84-40fc-a995-2a00ac938151 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0257897221004254-main.pdf
- Size:
- 5.22 MB
- Format:
- Adobe Portable Document Format