Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Recurrence relations for exceptional Hermite polynomials.

dc.contributor.authorGómez-Ullate Otaiza, David
dc.contributor.authorKasman, Alex
dc.contributor.authorKuijlaars, Arno B. J.
dc.contributor.authorMilson, Robert
dc.date.accessioned2023-06-18T06:51:28Z
dc.date.available2023-06-18T06:51:28Z
dc.date.issued2016-04
dc.description© 2015 Elsevier Inc. All rights reserved. The authors are grateful to the organizers of the conference NEEDS 2015 in Sardinia, Italy without which we might never have recognized the potential application of these tools to this problem. Likewise, the authors are grateful to Yves Grandati and Satoshi Tsujimoto for helpful conversations and their presentations on related topics at that conference. D.G.U. has been supported in part by Spanish MINECO Grants MTM2012-31714 and FIS2012-38949-C03-01 and by the ICMAT-Severo Ochoa grant SEV-2011-0087. A.B.J.K. is supported by KU Leuven Research Grant OT/12/073, the Belgian Interuniversity Attraction Pole P07/18, and FWO Flanders projects G.0641.11, G.0934.13, G.0864.16. R.M. is supported by NSERC grant RGPIN-228057-2004.
dc.description.abstractThe bispectral anti-isomorphism is applied to differential operators involving elements of the stabilizer ring to produce explicit formulas for all difference operators having any of the Hermite exceptional orthogonal polynomials as eigenfunctions with eigenvalues that are polynomials in x.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipInstituto de Ciencias Matemáticas (ICMAT)
dc.description.sponsorshipBecas Severo Ochoa (MICINN)
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipKU Leuven (Bélgica)
dc.description.sponsorshipBelgian Interuniversity Attraction Pole
dc.description.sponsorshipFonds Wetenschappelijk Onderzoek (FWO), Bélgica
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37093
dc.identifier.doi10.1016/j.jat.2015.12.003
dc.identifier.issn0021-9045
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.jat.2015.12.003
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24417
dc.journal.titleJournal of Approximation Theory
dc.language.isoeng
dc.page.final16
dc.page.initial1
dc.publisherAcademic Press-Elsevier Science
dc.relation.projectIDMTM2012-31714
dc.relation.projectIDFIS2012-38949-C03-01
dc.relation.projectIDSEV-2011-0087
dc.relation.projectIDOT/12/073
dc.relation.projectIDP07/18
dc.relation.projectIDG.0641.11
dc.relation.projectIDG.0934.13
dc.relation.projectIDRGPIN-228057-2004
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordExceptional orthogonal polynomials
dc.subject.keywordBispectral Darboux transformations.
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleRecurrence relations for exceptional Hermite polynomials.
dc.typejournal article
dc.volume.number204
dcterms.references[1] R. Askey. Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics, vol. 21, , SIAM (1975). [2] B. Bakalov, E. Horozov, M. Yakimov. General methods for constructing bispectral operators Phys. Lett. A, 222 (1–2) (1996), pp. 59–66. [3] M.M. Crum. Associated Sturm–Liouville systems. Quart. J. Math. Oxford Ser. (2), 6 (1955), pp. 121–127. [4] S.Yu. Dubov, V.M. Eleonskii, N.E. Kulagin. Equidistant spectra of anharmonic oscillators Chaos, 4 (1) (1994), pp. 47–53. [5] J.J. Duistermaat, F.A. Grünbaum. Differential equations in the spectral parameter Comm. Math. Phys., 103 (1986), pp. 177–240. [6] A.J. Durán. Exceptional Charlier and Hermite orthogonal polynomials. J. Approx. Theory, 182 (2014), pp. 29–58. [7] A.J. Durán. Higher order recurrence relation for exceptional Charlier, Meixner, Hermite and Laguerre orthogonal polynomials. Integral Transforms Spec. Funct., 26 (5) (2015), pp. 357–376. [8] G. Felder, A.D. Hemery, A.P. Veselov. Zeros of Wronskians of Hermite polynomials and Young diagrams. Physica D, 241 (23–24) (2012), pp. 2131–2137. [9] D. Gómez-Ullate, Y. Grandati, R. Milson. Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials. J. Phys. A, 47 (1) (2014), Article 015203. [10] F.A. Grünbaum, L. Haine, E. Horozov. Some functions that generalize the Krall–Laguerre polynomials. J. Comput. Appl. Math., 106 (2) (1999), pp. 271–297 [11] F.A. Grünbaum, M. Yakimov. Discrete bispectral Darboux transformations from Jacobi operators. Pacific J. Math., 204 (2) (2002), pp. 395–431. [12] ,in: J. Harnad, A. Kasman (Eds.), The Bispectral Problem, CRM Proceedings & Lecture Notes, vol. 14, , American Mathematical Society (1998) [13] A. Kasman, M. Rothstein. Bispectral Darboux transformations: The generalized Airy case. Physica D, 102 (3–4) (1997), pp. 159–176. [14] H. Miki, S. Tsujimoto. A new recurrence formula for generic exceptional orthogonal polynomials. J. Math. Phys., 56 (2015), Article 033502. [15] T. Muir. A Treatise on the Theory of Determinants, Rev. and Enlarged by W. H. Metzler Dover (1960). [16] S. Odake. Recurrence relations of the multi-indexed orthogonal polynomials J. Math. Phys., 54 (8) (2013), Article 083506. [17] S. Odake. Recurrence relations of the multi-indexed orthogonal polynomials. II. J. Math. Phys., 56 (5) (2015), Article 053506 [18] F.W. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark. NIST Handbook of Mathematical Functions. Cambridge University Press (2010). [19] R. Sasaki, S. Tsujimoto, A. Zhedanov. Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux–Crum transformations. J. Phys. A, 43 (31) (2010), Article 315204. [20] V. Spiridonov, L. Vinet, A. Zhedanov. Bispectrality and Darboux transformations in the theory of orthogonal polynomials. The Bispectral Problem, CRM. Proc. and Lecture Notes, vol. 14 (1998), pp. 111–122. [21] G. Szegő. Orthogonal Polynomials, Colloquium Publications, vol. 23, , American Mathematical Society (1939). [22] G. Wilson. Bispectral commutative ordinary differential operators. J. Reine Angew. Math., 442 (1993), pp. 177–204
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomez-ullate40postprint.pdf
Size:
351.77 KB
Format:
Adobe Portable Document Format

Collections