Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 μm region

dc.contributor.authorDíaz Herrera, Natalia
dc.contributor.authorGonzález Cano, Agustín
dc.contributor.authorViegas, Diana Catarino das Neves
dc.contributor.authorSantos, José Luis
dc.contributor.authorNavarrete Fernández, María Cruz
dc.date.accessioned2023-06-20T03:38:07Z
dc.date.available2023-06-20T03:38:07Z
dc.date.issued2010-04-08
dc.description© 2010 Elsevier B.V. This work has been partially supported by Spanish Government research project NESTOR, ref. CTM2004-03899; Comunidad de Madrid research project FUTURSEN, ref. S-0505/AMB-0374 and by Proyecto de Investigación Santander/Complutense, ref. PR34/07-15886. This work was supported partially by the Portuguese Government - Fundação para a Ciência e Tecnologia (FCT) through the grant SFRH/BD/30086/2006. N. Díaz-Herrera is thankful for the grant within the program ‘Becas Internacionales Universidad Complutense/Empresa Flores Valles 2008′. The authors wish to thank Carmen Cosculluela from Departamento de Física Aplicada of the Universidad de Zaragoza (Spain) and Javier de la Cruz from INESC Porto (Portugal) for helping us with the devices elaboration.
dc.description.abstractExperimental results are shown demonstrating that multiple surface plasma waves can be excited in optical fibres at the 1.5 μm optical communications region for the range of refractive indices of aqueous media using doubly deposited tapered fibre structures, well known to exhibit small or zero sensitivity to polarization. Well-defined plasmon dips were obtained with high sensitivity to the surrounding refractive index. This characteristic, together with the substantial flexibility for local and distributed measurement associated with optical fibre sensing supported by the C-Band technology, indicate that these devices can be very advantageously used for chemical, biological and environmental sensing.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Government
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipProyecto de Investigación Santander/Complutense
dc.description.sponsorshipPortuguese Government - Fundac¸ ão para a Ciência e Tecnologia (FCT)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipFlores Valles
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24329
dc.identifier.doi10.1016/j.snb.2010.02.036
dc.identifier.issn0925-4005
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.snb.2010.02.036
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44110
dc.issue.number1
dc.journal.titleSensors and Actuators B, Chemical
dc.language.isoeng
dc.page.final198
dc.page.initial195
dc.publisherElsevier Sci. Ltd.
dc.relation.projectIDNESTOR CTM2004-03899
dc.relation.projectIDFUTURSEN S-0505/AMB-0374
dc.relation.projectIDPR34/07- 15886
dc.relation.projectIDSFRH/BD/30086/2006
dc.relation.projectIDBecas Internacionales Universidad Complutense/ Empresa Flores Valles 2008
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordSurface Plasmon Resonance
dc.subject.keywordFibre Optic Sensors
dc.subject.keywordThird Telecommunications Window
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleRefractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 μm region
dc.typejournal article
dc.volume.number146
dcterms.references[1] R.C. Jorgenson, S.S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance, Sensors and Actuators B 12 (1993) 213–220. [2] J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species, Chemical Review 108 (2008) 462–493. [3] A.K. Sharma, R. Jha, B.D. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review, IEEE Sensors Journal 7 (2008) 1118–1128. [4] A. Leung, P.M. Shankar, R. Mutharasan, A review of fiber-optic biosensors, Sensors and Actuators B 125 (2007) 688–703. [5] D. Monzón-Hernández, J. Villatoro, High-resolution refractive index sensing by means of a multiple peak surface plasmon resonance optical fiber sensor, Sensors and Actuators B 115 (2006) 227–231. [6] F.J. Bueno, Ó. Esteban, N. Díaz-Herrera, M.C. Navarrete, A. González-Cano, Sensing properties of asymmetric double-layer covered tapered fibres, Applied Optics 43 (2004) 1615–1620. [7] A. González-Cano, F.J. Bueno, Ó. Esteban, N. Díaz-Herrera, M.C. Navarrete, Multiple surface-plasmon resonance in uniform-waist tapered optical fibers with an asymmetric double-layer deposition, Applied Optics 44 (2005) 519–526. [8] Ó. Esteban, N. Díaz-Herrera, M.C. Navarrete, A. González-Cano, SPR sensors based on uniform-waist tapered fibers in reflective configuration, Applied Optics 45 (2006) 7294–7298. [9] M.C. Navarrete, N. Díaz-Herrera, A. González-Cano, Ó. Esteban, “A polarizationindependent SPR fiber sensor”, Plasmonics, doi:101007/s11468-009r-r9108-0. [10] S. Pastkovsky, A.V. Kabashin, M. Meunier, J.H.T. Luong, Near-infrared surface plasmon resonance sensing on a silicon platform, Sensors and Actuators B 97 (2004) 409–414. [11] A. Díez, M.V. Andrés, J.L. Cruz, In-line fiber-optic sensors based on the excitation of surface plasmamodes in metal-coated tapered fibers, Sensors and Actuators B 73 (2001) 95–99. [12] T. Allsop, R. Neal, S. Rehman, D.J. Webb, D. Mapps, I. Bennion, Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings, Applied Optics 46 (2007) 5456–5460. [13] Ó. Esteban, M.C. Navarrete, A. González-Cano, E. Bernabéu, Simple model of compound waveguide structures used as fiber-optic sensors, Optics and Lasers in Engineering 33 (2000) 219–230. [14] J. Villatoro, D. Monzón-Hernández, E. Mejía, Fabrication and modelling of uniform-waist single-mode tapered optical fiber sensors, Applied Optics 42 (2003) 2278–2283. [15] V. Melchor Centeno, The refractive index of liquid water in the Near Infra-Red Spectrum, Journal of the Optical Society of America 31 (1941) 244–247. [16] L. Thormählen, J. Straub, U. Grigull, Refractive index of water and its dependence on wavelength, temperature and density, Journal of Physical and Chemical Reference Data 14 (1985) 933–945.
dspace.entity.typePublication
relation.isAuthorOfPublicationafe9b8aa-a3ab-4e1c-a223-856d6b12ae4d
relation.isAuthorOfPublication8f013df5-4042-4b99-b639-1176bcb4d4ce
relation.isAuthorOfPublicationdcb68811-1dc9-4b0a-9d96-31fe85a121da
relation.isAuthorOfPublication.latestForDiscoveryafe9b8aa-a3ab-4e1c-a223-856d6b12ae4d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NavarreteMC09.pdf
Size:
481.03 KB
Format:
Adobe Portable Document Format

Collections