Solvable Lie algebras with naturally graded nilradicals and their invariants

dc.contributor.authorAncochea Bermúdez, José María
dc.contributor.authorCampoamor Stursberg, Otto-Rudwig
dc.contributor.authorVergnolle, L. G.
dc.date.accessioned2023-06-20T09:31:35Z
dc.date.available2023-06-20T09:31:35Z
dc.date.issued2006
dc.description.abstractThe indecomposable solvable Lie algebras with graded nilradical of maximal nilindex and a Heisenberg subalgebra of codimension one are analysed, and their generalized Casimir invariants are calculated. It is shown that rank one solvable algebras have a contact form, which implies the existence of an associated dynamical system. Moreover, due to the structure of the quadratic Casimir operator of the nilradical, these algebras contain a maximal non-abelian quasi-classical Lie algebra of dimension 2n - 1, indicating that gauge theories (with ghosts) are possible on these subalgebras.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14718
dc.identifier.doi10.1088/0305-4470/39/6/008
dc.identifier.issn0305-4470
dc.identifier.officialurlhttps//doi.org/10.1088/0305-4470/39/6/008
dc.identifier.relatedurlhttp://iopscience.iop.org/0305-4470/39/6/008/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49809
dc.issue.number6
dc.journal.titleJournal of physics A: Mathematical and general
dc.language.isoeng
dc.page.final1355
dc.page.initial1339
dc.publisherIop science
dc.relation.projectIDPR1/05-13283
dc.rights.accessRightsrestricted access
dc.subject.cdu512.544.33
dc.subject.keywordCasimir-operators
dc.subject.keywordNilpotent
dc.subject.ucmGrupos (Matemáticas)
dc.titleSolvable Lie algebras with naturally graded nilradicals and their invariantsen
dc.typejournal article
dc.volume.number39
dspace.entity.typePublication
relation.isAuthorOfPublication8afd7745-e428-4a77-b1ff-813045b673fd
relation.isAuthorOfPublication72801982-9f3c-4db0-b765-6e7b4aa2221b
relation.isAuthorOfPublication.latestForDiscovery8afd7745-e428-4a77-b1ff-813045b673fd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01.pdf
Size:
196.84 KB
Format:
Adobe Portable Document Format

Collections