Automorphisms of moduli spaces of symplectic bundles.
dc.contributor.author | Biswas, Indranil | |
dc.contributor.author | Gómez, Tomás L. | |
dc.contributor.author | Muñoz, Vicente | |
dc.date.accessioned | 2023-06-20T00:18:38Z | |
dc.date.available | 2023-06-20T00:18:38Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Let X be an irreducible smooth complex projective curve of genus g >= 4. Fix a line bundle L on X. Let M-Sp (L) be the moduli space of semistable symplectic bundles (E,(sic) : E circle times E -> L) on X, with the symplectic form taking values in L. We show that the automorphism group of M-Sp (L) is generated by the automorphisms of the form E bar right arrow E circle times M, where M-2 congruent to O-X, together with the automorphisms induced by automorphisms of X. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Ministerio de Ciencia e Innovacion. | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16944 | |
dc.identifier.doi | 10.1142/S0129167X12500528 | |
dc.identifier.issn | 0129-167X | |
dc.identifier.officialurl | http://www.worldscinet.com/ijm/ijm.shtml | |
dc.identifier.relatedurl | http://www.worldscinet.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42373 | |
dc.issue.number | 5 | |
dc.journal.title | International Journal Mathematics | |
dc.language.iso | eng | |
dc.page.initial | 1250052 | |
dc.publisher | World Scientific publ PUBL co pte ltd | |
dc.relation.projectID | MTM2007-63582 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Moduli space | |
dc.subject.keyword | Symplectic bundle | |
dc.subject.keyword | Automorphism | |
dc.subject.keyword | Higgs bundle | |
dc.subject.keyword | Complex projective curve | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Automorphisms of moduli spaces of symplectic bundles. | |
dc.type | journal article | |
dc.volume.number | 23 | |
dcterms.references | A. Beauville, M. S. Narasimhan and S. Ramanan, Spectral curves and the generalised theta divisor, Jour. Reine U. N. Bhosle, Generalized parabolic bundles and applications–II, Proc. Indian Acad. Sci.(Math. Sci.) 106 (1996), 403–420. I. Biswas and T. L. Gomez, Hecke correspondence for symplectic bundles with application to the Picard Bundles, Inter. Jour. Math. 17 (2006), 45–63. I. Biswas and N. Hoffmann, A Torelli theorem for moduli spaces of principal bundles over a curve, arXiv:1003.4061. J. Draisma, H. Kraft and J. Kuttler, Nilpotent subspaces of maximal dimension in semi-simple Lie algebras, Compos.Math. 142 (2006), 464–476. G. Faltings, Stable G-bundles and projective connections,Jour. Algebraic Geom. 2 (1993)507–568. N. J. Hitchin, Stable bundles and integrable systems, Duke Math. Jour. 54 (1987), 91–114. J.-M. Hwang and S. Ramanan, Hecke curves and Hitchin discriminant, Ann. Sci. Ecole Norm. Sup. 37 (2004), 801–817. A. Kouvidakis and T. Pantev, The automorphism group of the moduli space of semistable vector bundles, Math. Ann. 302 (1995), 225–268. G. Laumon, Un analogue global du cˆone nilpotent, Duke Math. J. 57 (1988), 647–671. C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety, II, Publ. Math. I.H.E.S. 80 (1995), 5–79. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1