Recomendador de hábitos para reducir el riesgo de padecer sobrepeso y obesidad
Loading...
Official URL
Full text at PDC
Publication date
2024
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
En este Trabajo de Fin de Grado se ha diseñado un recomendador de hábitos saludables basado en computación evolutiva. El algoritmo evolutivo se encargará de encontrar valores de un conjunto de variables, es decir, hábitos modificables, para reducir el riesgo de padecer obesidad, teniendo en cuenta una selección de valores que son fijos, como la edad o el sexo.
Para evaluar las diferentes combinaciones de valores que genera el algoritmo evolutivo, utilizamos una serie de modelos obtenidos mediante técnicas de Machine Learning. Los datos utilizados para entrenar los modelos fueron obtenidos en el marco del proyecto Genobia y corresponden a más de 1100 personas, a los que se les ha realizado una encuesta sobre hábitos de vida y situación socioeconómica y un análisis genético.
El objetivo del trabajo presentado en este documento es proporcionar una herramienta práctica que ayude a las personas a realizar cambios en sus hábitos y rutinas con el fin de prevenir o reducir el riesgo de padecer obesidad.
This Bachelor’s Thesis presents the design of a healthy habits recommender system based on evolutionary computing. The evolutionary algorithm is tasked with finding values for a set of variables, namely modifiable habits, to reduce the risk of obesity, taking into account a selection of fixed values such as age or gender. In order to evaluate the different combinations of values generated by the evolutionary algorithm, we employed a series of models obtained through Machine Learning techniques. The data used to train the models was collected as part of the Genobia project, involving over 1100 individuals who completed a survey on lifestyle habits and social-economic status and a genetic analysis. The objective of the work presented in this document is to provide a practical tool to assist individuals in making changes to their habits and routines in order to prevent or reduce the risk of obesity.
This Bachelor’s Thesis presents the design of a healthy habits recommender system based on evolutionary computing. The evolutionary algorithm is tasked with finding values for a set of variables, namely modifiable habits, to reduce the risk of obesity, taking into account a selection of fixed values such as age or gender. In order to evaluate the different combinations of values generated by the evolutionary algorithm, we employed a series of models obtained through Machine Learning techniques. The data used to train the models was collected as part of the Genobia project, involving over 1100 individuals who completed a survey on lifestyle habits and social-economic status and a genetic analysis. The objective of the work presented in this document is to provide a practical tool to assist individuals in making changes to their habits and routines in order to prevent or reduce the risk of obesity.
Description
Trabajo de Fin de Grado en Ingeniería Informática e Ingeniería de Software, Facultad Informática UCM, Departamento Arquitectura de Computadores y Automática, Curso 2023/2024