First Order Phase Transition in a 3D disordered system
dc.contributor.author | Fernández Pérez, Luis Antonio | |
dc.contributor.author | Gordillo Guerrero, A. | |
dc.contributor.author | Martín Mayor, Víctor | |
dc.contributor.author | Ruiz Lorenzo, J. J. | |
dc.date.accessioned | 2023-06-20T11:17:11Z | |
dc.date.available | 2023-06-20T11:17:11Z | |
dc.date.issued | 2008 | |
dc.description | © 2008 American Institute of Physics. BIFI International Congress (111th. 2008. Zaragoza, Spain). This work has been partially supported by MEC through contracts No. FIS2004-0I399, FIS2006-08533-C03, FIS2007-60977 and by CAM and BSCH. Computer time was obtained at BIFI, UCM and UEx and (~ 50%) in the Mare Nostrum. The authors thankfully acknowledge the computer resources and technical expertise provided by the Barcelona Supercomputing Center. | |
dc.description.abstract | We present a detailed numerical study on the effects of adding quenched impurities to a three dimensional system which in the pure case undergoes a strong first order phase transition (specifically, the ferromagnetic/paramagnetic transition of the site-diluted four states Potts model). We can state that the transition remains first-order in the presence of quenched disorder (a small amount of it) but it turns out to be second order as more impurities are added. A tricritical point, which is studied by means of Finite-Size Scaling, separates the first-order and second-order parts of the critical line. The results were made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that arise using the standard methodology. We also made use of a recently proposed microcanonical Monte Carlo method in which entropy, instead of free energy, is the basic quantity. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MEC (Spain) | |
dc.description.sponsorship | CAM (Spain) | |
dc.description.sponsorship | BSCH | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/38301 | |
dc.identifier.doi | 10.1063/1.3033359 | |
dc.identifier.issn | 0094-243x | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.3033359 | |
dc.identifier.relatedurl | http://scitation.aip.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51917 | |
dc.journal.title | AIP conference proceedings: large scale simulations of complex systems, condensed matter and fusion plasma | |
dc.language.iso | eng | |
dc.page.final | 57 | |
dc.page.initial | 46 | |
dc.publisher | American Institute of Physics | |
dc.relation.projectID | FIS2004-0I399 | |
dc.relation.projectID | FIS2006-08533-C03 | |
dc.relation.projectID | FIS2007-60977 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 53 | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Field ising-model | |
dc.subject.keyword | Bond Potts models | |
dc.subject.keyword | Critical exponents | |
dc.subject.keyword | Critical-behavior | |
dc.subject.keyword | Monte-Carlo. | |
dc.subject.ucm | Física (Física) | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.unesco | 22 Física | |
dc.title | First Order Phase Transition in a 3D disordered system | |
dc.type | journal article | |
dc.volume.number | 1071 | |
dcterms.references | 1. See e.g., G. Farisi, Field Theory, Disorder and Simulations, World Scientific 1994. 2. L. A. Fernández, A. Gordillo-Guerrero, V. Martín-Mayor, J. J. Ruiz-Lorenzo, Phys. Rev. Lett., 100, 057201 (2008). 3. E. Dagotto, Science, 309, 258 (2005) -- J. Burgy, et al, Phys. Rev. Lett., 87, 277202 (2001) -- ibid, 92, 097202 (2004) -- C. Sen, G. Álvarez, E. Dagotto, Phys. Rev. Lett., 98, 127202 (2007). 4. M. Aizenman, J. Wehr, Phys. Rev. Lett., 62, 2503 (1989) -- K. Hui, A.N. Berker, ibid, 62, 2507 (1989). 5. J. Cardy, J.L. Jacobsen, Phys. Rev. Lett., 79, 4063 (1997) -- ibid, Nucl. Phys. B, 515, 701 (1998). 6. F.Y. Wu, Rev. Mod. Phys., 54, 235 (1982). 7. H. Rieger, A.P. Young, J. Phys. A: Math. Gen., 26, 5279 (1993) -- J. Machta, M.E.J. Newman, L.B. Chayes, Phys. Rev. E, 62, 8782 (2000). 8. H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J. J. Ruiz-Lorenzo, Phys. Rev. B, 61, 3215 (2000). 9. C. Chatelain, B. Berche, W. Janke, P-E. Berche, Phys. Rev. E, 64, 036120 (2001). 10. C. Chatelain, B. Berche, W. Janke, P-E. Berche, Nucl. Phys. B, 719, 275 (2005). 11. T. Nehaus, J.S. Hager, J. of Stat. Phys., 113, 47 (2003). 12. V. Martín-Mayor, Phys. Rev. Lett., 98, 137207 (2007). 13. R.H. Swendsen, J.-S. Wang, Phys. Rev. Lett., 58, 86 (1987). 14. D. Stauffer, A. Aharony, Introduction to the percolation theory, (Taylor and Francis, London 1984). 15. D. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena, World-Scientific Singapore 2005. 16. L. A. Fernández, A. Gordillo-Guerrero, V. Martín-Mayor, J. J. Ruiz-Lorenzo, in preparation. 17. H.G. Ballesteros, et al., Nucl. Phys. B, 512, 681 (1998) -- ibid, Phys. Rev. B, 58, 2740 (1998). 18. H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz-Sudupe, Phys. Lett. B, 378, 207 (1996) -- ibid, 387, 125 (1996). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 146096b1-5825-4230-8ad9-b2dad468673b | |
relation.isAuthorOfPublication | 061118c0-eadf-4ee3-8897-2c9b65a6df66 | |
relation.isAuthorOfPublication.latestForDiscovery | 146096b1-5825-4230-8ad9-b2dad468673b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- FernándezPérezLuisAntonio26LIBRE.pdf
- Size:
- 557.65 KB
- Format:
- Adobe Portable Document Format