Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Asymptotic Survival of Genuine Multipartite Entanglement in Noisy Quantum Networks Depends on the Topology

dc.contributor.authorContreras Tejada, Patricia
dc.contributor.authorPalazuelos Cabezón, Carlos
dc.contributor.authorDe Vicente, Julio I.
dc.date.accessioned2024-02-15T19:21:46Z
dc.date.available2024-02-15T19:21:46Z
dc.date.issued2022
dc.description.abstractThe study of entanglement in multipartite quantum states plays a major role in quantum information theory and genuine multipartite entanglement signals one of its strongest forms for applications. However, its characterization for general (mixed) states is a highly nontrivial problem. We introduce a particularly simple subclass of multipartite states, which we term pair-entangled network (PEN) states, as those that can be created by distributing exclusively bipartite entanglement in a connected network. We show that genuine multipartite entanglement in a PEN state depends on both the level of noise and the network topology and, in sharp contrast to the case of pure states, it is not guaranteed by the mere distribution of mixed bipartite entangled states. Our main result is a markedly drastic feature of this phenomenon: the amount of connectivity in the network determines whether genuine multipartite entanglement is robust to noise for any system size or whether it is completely washed out under the slightest form of noise for a sufficiently large number of parties. This latter case implies fundamental limitations for the application of certain networks in realistic scenarios, where the presence of some form of noise is unavoidable. To illustrate the applicability of PEN states to study the complex phenomenology behind multipartite entanglement, we also use them to prove superactivation of genuine multipartite nonlocality for any number of parties.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Ciencias Matemáticas (ICMAT)
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.citationP. Contreras-Tejada, C. Palazuelos, and J. I. De Vicente, Asymptotic Survival of Genuine Multipartite Entanglement in Noisy Quantum Networks Depends on the Topology, Phys. Rev. Lett. 128, 220501 (2022).
dc.identifier.doi10.1103/physrevlett.128.220501
dc.identifier.essn1079-7114
dc.identifier.issn0031-9007
dc.identifier.officialurlhttps://doi.org/10.1103/physrevlett.128.220501
dc.identifier.relatedurlhttps://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.220501
dc.identifier.urihttps://hdl.handle.net/20.500.14352/101486
dc.issue.number22
dc.journal.titlePhysical Review Letters
dc.language.isoeng
dc.page.initial220501 (6)
dc.publisherAmerican Physical Society
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113523GB-I00/ES/ANALISIS MATEMATICO Y TEORIA DE INFORMACION CUANTICA/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//SEV-2015-0554/ES/INSTITUTO DE CIENCIAS MATEMATICAS/
dc.relation.projectIDQUITEMAD-CMS2018/TCS-4342
dc.rights.accessRightsrestricted access
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleAsymptotic Survival of Genuine Multipartite Entanglement in Noisy Quantum Networks Depends on the Topologyen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number128
dspace.entity.typePublication
relation.isAuthorOfPublication09970d9e-6722-4f02-aac0-023cf9867638
relation.isAuthorOfPublication.latestForDiscovery09970d9e-6722-4f02-aac0-023cf9867638

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Asymptotic_Survival.pdf
Size:
212.17 KB
Format:
Adobe Portable Document Format

Collections