Evolution of the solutions of some diffusion problems with absorption (Spanish: Evolución de las soluciones de ciertos problemas de difusión con absorción)
Loading...
Download
Full text at PDC
Publication date
1980
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universitat Autònoma de Barcelona
Citation
Abstract
This note is an account of results obtained by the author [Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid 75 (1981), no. 5, 1165–1183; MR0649591 (83m:35076)], and the author and J. L. Vázquez ["On a class of nonlinear parabolic equations'', to appear] about the property of compact support of solutions of the Cauchy problem ut=∑(∂/∂xi)(|∂u/∂xi|p−2∂u/∂xi)+α(u) in RN×(0,T), 1<p<+∞, u(0)=u0(x) in RN. The assumptions on the initial datum are u0∈L2(RN)∩L∞(RN), u0≥0, u0(x)→0 uniformly as |x|→∞, and on the absorption term α(u) they are ∫10ds/[sα(s)]1/p<∞ when p>2, and ∫10ds/α(s)<∞ when 1<p≤2. It is shown, by means of comparison with suitable supersolutions, that for t>0 the support of x↦u(t,x) is compact (even if the initial datum is not compactly supported) and that the solution disappears in finite time, i.e., u(x,t)≡0 if t>t0, where t0 is a positive number depending upon u0.
Description
Proceedings of the second conference on differential equations and their applications, II (Valldoreix, 1979)