Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Linearity criterion for the selection of an optimal tree.

dc.contributor.authorMunduate del Rio, A.
dc.contributor.authorCano Sevilla, Francisco Jose
dc.contributor.authorPérez Prados, A.
dc.date.accessioned2023-06-20T18:42:24Z
dc.date.available2023-06-20T18:42:24Z
dc.date.issued1997
dc.description.abstractThe aim of this paper is to present a method for selecting the optimal tree among the possible trees that can be generated starting from the a data set. Analysis a quantity criterion is used through the linear combination of the quality measurements of the tree, namely, resubstitution error and linearity. The application of the method leads to a succession of optimal trees, in such a way, that an element of the succession is associated with each possible value of the linear combination's parameter c~.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20567
dc.identifier.doi10.1007/BF02568534
dc.identifier.issn1863-8279
dc.identifier.officialurlhttp://link.springer.com/article/10.1007/BF02568534
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58377
dc.issue.number1
dc.journal.titleSociedad de Estadística e Investigación Operativa Top
dc.language.isoeng
dc.page.final142
dc.page.initial127
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu519.226
dc.subject.keywordDecision trees
dc.subject.keywordPruning process
dc.subject.keywordLinearity
dc.subject.keywordResubstitution error.
dc.subject.ucmTeoría de la decisión
dc.subject.unesco1209.04 Teoría y Proceso de decisión
dc.titleLinearity criterion for the selection of an optimal tree.
dc.typejournal article
dc.volume.number5
dcterms.referencesArbab, B. and D. Michie (1988). Generating Expert Rules from Examples in Prolog.Machine Intelligence,11; 289–304. Breiman, L., J. H. Friedman, R. A. Olshen and C. J. Stone (1984).Classification and Regression Trees. The Wadsworth Statistics/Probability Series. Monterey, California. Ciampi, A., C. H. Chang, S. Hogg and S. Mckineey (1987). Recursive partition: A versatile method for exploratory data analysis in biostatistics. InProceedings from Joshi Festschrift, G. Umphrey (ed), 23–50. Amsterdam: North-Holland. Ciampi, A. (1989). Generalized Regression Trees.Computational Statistics and Data Analysis,12, 1, 57–78. Cuesta, P. (1989). Inducción en bancos de datos cualitativos. Tesis Doctoral. Facultad de Matemáticas.Universidad Complutense de Madrid. Goodman L. and W. Kruskal (1954). Measures of Association for Cross Classifications.JASA,49; 732–764. Guegun, A. and J. P. Nakache (1988). Methode de Discrimination Basée sur la construction d'un Arbre de Décision Binaire.Revue de Statistique Appliquée,36; 19–38. Hartigan, J. (1975).Clustering Algorithms. New York: Wiley and Sons. Munduate, A. (1993). Cuestiones notables en la construcción y comparación de árboles de decisión. Tesis Doctoral. Departamento de Métodos Estadísticos. Universidad Pública de Navarra.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cano51.pdf
Size:
645.57 KB
Format:
Adobe Portable Document Format

Collections